Jess, the Java Expert System Shell

Distribution
Category UC-411
SAND98-8206 (revised)
Unlimited Release
First Printed November 1997

Jess, The Java Expert System Shell

http: //her zberg.ca.sandia.gov/jess
Ernest J. Friedman-Hill
Distributed Computing Systems
Sandia National Laboratories
Livermore, CA
Version 4.3 (December 3rd, 1998)

ABSTRACT

This report describes Jess, an expert system shell written entirely in Java. Jess supports the development of
rule-based expert systems which can be tightly coupled to code written in the powerful, portable Java
language. The syntax of the Jess language is discussed, and a comprehensive list of supported functionsis
presented. A guide to calling Java functions from Jess, and to extending Jess by writing Java code, is also
included.

1 Introduction

Jessis an expert system shell written entirely in Java. Jess was originally a clone of the essential core of CLIPS, but has
begun to acquire a Java-influenced flavor of its own. With Jess, you can conveniently give your Java applets and

applications the ability to "reason.” In describing Jess, | am going to describe much of CLIPS itself, but the reader may
want to have a copy of the CLIPS manuals at hand. See the CLIPS site for more information.

Jess 4.3 is compatible with all versions of Java starting with version 1.0.2. It is compatible with version 1.1, although while
compiling you will see warnings about deprecated methods. Such is the price of compatibility! Note: Jess 4.3 isthe last
version that will be compatible with Java 1.0.2; future versions of Jess will not work with anything less than Java 1.1. That
means that the "deprecated" warnings will disappear.

Jessisawork in progress, more features are constantly being added. The order will be determined in part by what folks
seem to want most, what | need Jess to do, and how much time | have to spend on it. See Version History for alist of what's

new in thisversion of Jess and see What's New in This Release for a quick overview.

Thereisa Jess email discussion list you can join. To get information about the jess-users list, send a message to
majordomo@sandia.gov containing the text

hel p

I nfo jess-users

end

as the body of the message.

Thisisthe final release of Jess 4.3. Although this version has undergone extensive testing, It's always possible that there are
bugs. Please report any that you find to me at gjfried@ca.sandia.gov so | can fix them for alater release.

Jessis copyrighted software. See the file LICENSE for details.

1.1 Getting Started With Jess

file:///D|/README.html (1 of 73) [5/3/1999 2:51:03 PM]

http://herzberg.ca.sandia.gov/jess
http://www.ghg.net/clips/CLIPS.html
http://www.ghg.net/clips/CLIPS.html
mailto:ejfried@ca.sandia.gov
file:///D|/LICENSE

Jess, the Java Expert System Shell

1.1.1 Unpacking the Distribution

If you download Jess for UNIX, you can extract the files using tar and uncompress:

unconpress Jess-4.3.tar.Z
tar xf Jess-4.3.tar

If you downloaded Jess for Windows, you get a .zip file which should be unzipped using a Win32-aware unzip program like
WinZip. Don't use PKUNZIP since it cannot handle long file names.

When Jess is unpacked, you should have a directory named Jess43/ . Inside this directory should be the following files:

README. ht m Thisfile

A directory containing thej ess package. There are many source filesin here that implement Jess's
inference engine. Others implement a number of Jess GUIs and command-line interfaces.

J ess/ Mai n. j ava implements the Jess command-line interface. Consol e. j ava isavery smple GUI
console for Jess, Consol eAppl et . j ava isan applet version of the same.

]j ess/ vi ew]Javasourceimplementing the optional Jessvi ew command.

. Java source implementing the optional Jess commands that let you create and manipulate Java objects

j ess/refl ect from Jess

’exarrpl es/ ’A directory of tiny example Jess files.

]j ess/ exanpl es]A directory of more complicated examples, containing example Java source files.
’i ndex. ht m ’A web page containing the Jess example applet. It may need to be edited.
’I\/akef ile ’A simple makefile for Jess.

1.1.2 Compiling Jess

Jess comes as a set of Java source files. You'll need to compile them first. If you have anake utility (any UNIX make; or
nmake or GNU make on Win32), you can just run make and the enclosed makefile will build everything. Y ou might have
to edit it a bit first. Otherwise the commands:

javac jess/*.java (UN X)
or

javac jess*.java (Wn32)
would work just fine, given that you have a Java compiler like Sun's JDK, and that Jess43/ isyour current directory. If
you have problems, be sure that the directory in which the jess subdirectory appearsis on your CLASSPATH; this may
mean including . (dot). Don't try to compile from insidethe Jess43/j ess/ directory; it won't work. Y ou can use either
aJava 1.0.2 or aJava 1.1 compiler to compile Jess. The resulting code runs on either 1.0 or 1.1 VMs. Note that if you use a

1.1 compiler, you will see some warning about deprecated methods. It is safe to ignore these warnings. Jess also seemsto
work with Java 1.2.

There are anumber of optional source filesin the subdirectoriesJess43/ | ess/ vi ew/,Jess43/j ess/ refl ect/and
Jess43/j ess/ exanpl es/ that aren't compiled if you follow the instructions above. These files define the optional
debugging command vi ew, the reflection commandsnew, cal | , set , get, set - menber , and get - nenber , and the
Java object matching commands def cl ass anddef i nst ance. They can be compiled only with Javal.1 or later. If
you have such a compiler, then you can issue a command like:

javac jess/*.java jess/view *.java jess/reflect/*.java jess/exanples/*/*.java
(Uni x)
or

javac jess*.java jess\view*.java jess\refl ect*.]java jess\exanpl es\ punps*.java
j ess\ exanpl es\sinmpl e\ *.java (Wn32)
to compile everything (or use the Makefile, of course).

file:///D|/README.html (2 of 73) [5/3/1999 2:51:03 PM]

Jess, the Java Expert System Shell

Again, don't set your current directory to, for example, Jess43/jess/examples/pumps/ to compile the
pumps example: it will not work. The compiler will report all sorts of errors about classes not being
found and the jess package not being found. Compile everything from the Jess43 directory. | can't
stress this enough: this is by far the most common problem people have in getting started with Jess!

1.1.3 Jess Example Programs

There are several example programs for you to try, including f ul | mab. cl p, zebr a. cl p, and wor dgane. cl p.
ful I mab. cl p isaversion of the classic Monkey and Bananas problem. To run it yourself from the command line, just
type:

java jess. Main exanpl es/full mab.clp (Unix)
or

java jess. Main exanples\fullmb.clp (Wn32)

and the problem should run, producing afew screens of output. Any file of Jess code can be run thisway. Many simple
CLIPS programs will also run unchanged in Jess. Note that giving Jess a file name on the command lineislike using the
bat ch command in CLIPS. Therefore, you need to make sure that the file ends with:

(reset)
(run)

or nothing will happen. Thezebr a. cl p andwor dgane. cl p programs are two classic CLIPS examples selected to
show how Jess deals with tough situations. These examples both generate huge numbers of partial pattern matches, so they
are slow and use up alot of memory. They each can take some time to run, depending on your computer. Other examples
includest i cks. cl p (aninteractive game) and f r ane. cl p (ademo of building agraphical interface using Jess's Java
integration capabilities).

In the jess/examples/* subdirectories, you will find some more complex examples, al of which contain both Java and Jess
code. As such, these are generally examples of how to tie Jess and Java together. The Pumps examplesis afull working
program that demonstrates how Jess rules can react to the properties of Java Beans.

1.1.4 Command-line Interface

Jess has an interactive command-line interface. Just typej ava j ess. Mai n to get aJess> prompt. To execute afile of
CLIPS code from the command prompt, use the bat ch command:

Jess> (batch nyfile.clp)
(lots of output)

Y ou can use the Jess sy st emcommand to invoke an editor from the Jess command line to edit afile of Jess code before
reading it in with bat ch. syst emalso helpsto allow non-Java programmers to integrate Jess with other applications.
Given that you have an editor named not epad on your system, try:

Jess> (system not epad README &)
TRUE

The & character makes the editor run in the background. Omitting it will keep the system command from returning until the
called program exits.

Theclassj ess. Consol e isagraphical verison of the Jess command-line interface. Output appearsin ascrolling
window. Typej ava j ess. Consol e totry it.

1.1.5Jess as an Applet

Theclassj ess. Consol eAppl et isageneric Jess applet that uses the same display asthej ess. Consol e class. It can
be used in general question-and-answer situations simply by embedding the applet class on a Web page. The applet accepts
two applet parameters. The value of an | NPUT parameter will be interpreted as a Jess program to run when starting up.
Note that when this program halts, the Jess prompt will appear in the applet window. The applet also accept a COMPACT
parameter. If present, Consol eAppl et will contain only a bare-bones version of Jess (no optional functions will be

file:///D/README.html (3 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

| oaded).

1.2 What's New in This Release

If you've used Jess before, this section will help you get started quickly with this version. Jess 4.3 offers quite afew new
features and user-visible changes:

Since the beginning, the standard Jess console and Applet classes have been combined into one class. In the 4.0
release, the curiously named QuizDisplay class continued thisill-advised economy, combining an Applet, an
application, -and- a ReteDisplay subclassin one! This has been remedied: These classes have been broken out into
jess.Main, jess.Console, jess.ConsoleApplet, and jess.ConsoleDisplay. The old ‘Monkey and Banana applet with the
flashing color lights has been (alas) removed and is no longer supported.

TheUser f unct i on interface has changed dlightly. nanme() returnsa String. RU.getAtom() and RU. put At om()
are gone; thereis no longer any need for them. A few public methods here and there that used to accept integers or
return integers now return Strings or accept Strings as arguments; for example, the name () methods of all the

Def (X) classes now return String.

The d obal Cont ext class has disappeared, and the way execution contexts are managed internally has been
simplified. This should be an invisible change for 99.9% of users.

Adding input routers has been slightly complicated, as you can specify how the r ead command should behave with
agiven router.

A manual section has been added that better explains writing main() for a Java app thet embeds Jess.

Y ou can now supply afunction call as aslot default value in a deftemplate; and you can supply defaults for
multislots. Furthermore, the new default-dynamic deftemplate slot attribute lets you specify that a default function
call value for adot be evaluated each time a deftemplate fact is asserted.

Important! The way that defglobals behave in the face of the (reset) command has changed to match CLIPS
behavior. The set-reset-globals and get-reset-globals commands have been added to let you modify this. See their

documentation for a better description of the changes.
The set-strategy command has been added, bringing user-sel ectable conflict resolution strategies to Jess.

The try command has been added, bringing exception handling to Jess!
The new agenda command lets you see what will happen next.
The set-salience-evaluation command lets you use dynamic rule salience (afairly advanced feature.)

Theuni que conditional element in new. Important! Y ou can no longer use the atom ‘unique’ as the head of a
deftemplate as aresult. Uni que lets you give hints to the Rete engine and can theoretically result in speedups of up
to 50%; in practice |'ve observered real speedups of 20-30%; for examples, see thewor dgane and zebr a sample
programs.

Thest or e and f et ch functions (both in Jess and as Java member functions of thej ess. Ret e class) let you
easily pass values between Jess and Java, from simple types to Java objects.

Thej ess. refl ect. Canvas class has been added. It lets you write GUIs in Jess that include drawing and
painting, without writing any Java code.

2 The Jess Language

Jessis an interpreter for arule language borrowed from CLIPS. Given CLIPS's heritage (strongly influenced by systems
written in LISP), thisrule language is basically asmall, idiosyncratic version of L1SP, making Jess a LISP interpreter
written in Java. | will briefly describe this language here; more information can be gotten from the CLIPS manuals
themselves.

I'm using an extremely informal notation to describe syntax. Basically strings in <angle-brackets> are some kind of data
that must be supplied; things in [square brackets] are optional, things ending with + can appear one or more times, and
things ending with * can appear zero or more times.

file:///D/README.html (4 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

In general, input to Jessis free-format. Newlines are generally not significant and are treated as whitespace.

In the example dialogs, you type what appears after the Jess> prompt. The system responds with the text in bold.
2.1 Atoms

The atom or symbol is a core concept of the Jess language. Atoms are very much like identifiersin other languages. A Jess
atom can contain letters, numbers, and the following punctuation: $* =+/ <>_?#. . An atom may not begin with a number;
it may begin with some punctuation marks (some have special meanings as operators when they appear at the start of an
atom). The best atoms consist of letters, numbers, underscores, and dashes; dashes are traditional word separators. The
following are al valid atoms:

foo first-value contestant#1 _abc
2.2 Numbers

Jess parses numbers using the Java St r eanifokeni zer class. Therefore, it accepts only simple floating point and integer
numbers. It does not accept scientific or engineering notation. The following are al valid numbers:

3 4. 5.643
2.3 Strings

Character stringsin Jess are denoted using double quotes (" *). Backslashes (\) can be used to escape embedded quote
symbols. The following are all valid strings:

"foo" "Hello, World" "\"Nonsense,\" he said firmy."
2.4 Lists

The fundamental unit of syntax in Jessisthelist. A list always consists of an enclosing set of parentheses and zero or more
atoms, numbers, strings, or other lists. The following are valid lists:

(+ 32) (abec) ("Hello, Wrld") () (deftenplate foo (slot bar))
Thefirst element of alist (the car of thelist in LISP parlance) is often called the list's head in Jess.

2.5 Comments

Programmer's comments in Jess begin with a semicolon (;) and extend to the end of the line of text. Here is an example of a
comment:

: This is a list
(a b c)

2.6 Functions

Jess contains alarge number of built-in functions that you may call. More functions are provided as extensions. Y ou can
write your own functionsin the Jess language (see Deffunctions) or in Java (see Extending Jess with Java).

Function callsin Jess use a prefix notation. A list whose head is an atom that is the name of an existing function can be
evaluated as an expression. For example, an expression that uses the + function to add the numbers 2 and 3 would be
written (+ 2 3) . When evaluated, the value of this expression isthe number 5 (not alist containing the single element
5. In general, expressions are recognized as such and evaluated in context when appropriate. Y ou can type expressions at
the Jes s> prompt. Jess evaluates the expression and prints the result:
Jess> (+ 2 3)
5
Jess> (+ (+ 2 3) (* 3 3))
14

file:///D/README.html (5 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

Note that arithmetic results may be returned as floating-point numbers or as integers, depending on the types of the
arguments.

Jess implements only a small subset of CLIPS functions as intrinsic functions that are built into Jess and cannot be
removed. All of these have been designed to function as much like their CLIPS counterparts as possible. On the other hand,
I'm supplying implementations for many more CLIPS functions, and lots of functionality specific to Jess, as 'Userfunctions
- external functions written in Javathat you can plug into Jess. All of the included Userfunctions are installed into the
command-line version of Jess by default; you can pick and choose in your own applications. In applets, in particular, you
may want to include only the Userfunctions you need, to keep the size of the applet down. (see Extending Jess with Javafor

information about doing this.)

Here is the complete list of functions shipped with Jess 4.3, both intrinsic and optional:

* ** + . | < <= <> = > >= abs agenda and assert assert-string bag batch
bind build call clear close conplenent$ create$ defcl ass definstance
del ete$ div e engine eq eq* eval evenp exit exp expl ode$ external -addressp
facts fetch first$ float floatp foreach format gensynt get get-nmenber
get-reset-global s get-salience-evaluation get-var halt if inplode$ insert$
integer integerp intersection$ jess-version-nunber jess-version-string
| engt h$ | exenep list-function$ | oad-facts |oad-function |oad-package | og
| 0g10 | owcase max nmenber$ min nod nodify nmultifieldp neq new not nth$
nunberp oddp open or pi ppdefrule printout randomread readline replace$
reset rest$ retract retract-string return round rules run save-facts set
set-nmenber set-reset-globals set-salience-evaluation set-strategy setgen
socket sqrt store str-cat str-conpare str-index str-length stringp
sub-string subseq$ subsetp symcat synbolp systemtine try undefinstance
undef rul e uni on$ unwat ch upcase vi ew watch while
All these functions are described in detail in the Jess Function Guide. Note that the distinction between intrinsic functions
and Userfunctions is mostly an academic one; intrinsic functions are all written as Java classes that implement the same
User f unct i on interface that user-supplied classes do. The only real difference is whether Jess will start up without
them; the intrinsics are required because they're loaded in by code in the jess.Funcall class. To find out if afunctionis
intrinsic, see its entry in the Function Guide below.

2.7 Variables

Programming variables in Jess are atoms that begin with the question mark (?) character. The question mark is part of the
variable's name. A normal variable can refer to a single atom, number, or string. A variable whose first character isinstead a
$ (for example, $?X) isamultivariable, which can refer to a specia kind of list called multifield. Y ou assign to any
variable using the bi nd function:

(bind ?x "The val ue")

Multifields are generally created using special multifield functions like cr eat e$ and can then be bound to multivariables:
(bi nd $?grocery-list (create$ eggs bread mlk))

Variables need not (and cannot) be declared before their first use (except for Defglobals).

2.8 Constructs

Besides expressions and multifields, the Jess language includes another kind of special list called a construct. A construct is
alist that defines something to the Jess system itself. For example, thedef f unct i on construct is used to define functions
(see Deffunctions). A construct evaluatesto TRUE if it was accepted by Jess or FALSE if it was not.

2.9 Deffunctions

Thedef f unct i on construct is used to define functions that you can then call from Jess. A def f unct i on construct
looks like this:

file:///D/README.html (6 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

(def function <function-name> [<doc-coment>] (<paraneter>*)
<expr >*
[<return-specifier>])

The <f unct i on- name> must be an atom. Each <par amet er > must be avariable name (all functions use
pass-by-value semantics). The optional <doc- comment > is a double-quoted string that can describe the purpose of the
function. There may be an arbitrary number of <expr > expressions. The optional <r et ur n- speci f i er > givesthe
return value of the function. It can either be an explicit use of ther et ur n function or it can be any value or expression.
Control flow indef f unct i onsisachieved viathe specia control-flow expressionsf or each, i f,andwhi | e. The
following isadef f unct i on that returns the numerically larger of its two numeric arguments.

(deffunction max (?a ?b)
(if (> ?a ?b) then
(return ?a)

el se
(return ?b)))

Note that this could have also been written as:

(deffunction max (?a ?b)
(if (> ?a ?b) then
?a
el se
?b))

2.10 Facts

Jess maintains alist of facts or information about the current state of the system. Facts may be ordered or unordered.
Ordered facts are merely lists whose head must be an atom:

(tenperature 98. 6)

(shopping-list bread m |k paper-towels)

(start-processing)
Unordered facts are structured. They contain a definite set of slots which must be accessed by name. While ordered facts
can be used without prior definition, unordered facts must be defined using the def t enpl at e construct (see

Deftempl ates).

Facts are placed on the fact list by theassert function. You can see the current fact list using thef act s function. You
can remove (r et r act) afact from the fact list if you know itsfact ID. For example:

Jess> (assert (foo bar))
<Fact - 0>

Jess> (facts)
f-0 (foo bar)
For a total of 1 facts.
TRUE

Jess> (retract 0)
TRUE

Jess> (facts)
For a total of O facts.
TRUE

2.11 Deftemplates

To define an unordered fact, usethe def t enpl at e construct:

(deftenpl at e <deftenpl at e- nanme> [<doc- comrent >]
[(sl ot <slot-name> [(default <val ue>)]

file:///D/README.html (7 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

[(def aul t -dynam ¢ <val ue>) |

[(type <typespec>)])]+)
The<def t enpl at e- nane> isthe head of the facts that will be created using thisdef t enpl at e. There may be an
arbitrary number of slots. The <sl ot - name> must be an atom. Thedef aul t dlot qualifier states that the default value of
adotinanew fact isgiven by <val ue>; the default isthe atom ni | . The 'default-dynamic' version will evaluate the
given function each time a new fact using this template is asserted. The 'type' slot qualifier is accepted (for compatibility
with CLIPS) but isignored by Jess.

As an example, defining the following def t enpl at e:

(deftenpl ate aut onobil e
"A specific car."
(sl ot nake)
(sl ot nodel)
(sl ot year)
(slot color (default white)))

would alow you to define facts like this:

Jess> (assert (autonobile (nmake Chrysler) (nodel LeBaron) (year 1997)))
<Fact - 0>

Jess> (facts)
f-0 (autonobi |l e (nmake Chrysler) (nodel LeBaron) (year 1997) (color white))
For a total of 1 facts.
TRUE

Note that the car is white by default. Also note that any number of additional automobiles could also be simultaneously
asserted onto the fact list using thisdef t enpl at e.

A givendotinadef t enpl at e fact can normally hold only one value. If you want a slot that can hold multiple values,
usetherul ti sl ot keyword instead:

(deftenpl ate box
(slot |ocation)
(multislot contents))

(assert (box (location kitchen) (contents spatul a sponge frying-pan)))
2.12 Defclasses

A def cl ass construct basically lets you use a Java Bean as a deftemplate. Almost any Java object can be made into a
Bean. Thisisavery powerful feature of Jessthat lets it reason about the state of objects connected to the physical world.
def cl ass will be documented |ater, after we've explained some of the prerequisites.

2.13 Deffacts

The deffacts construct is a handy way to define alist of facts that should be made true when the Jess system is started or
reset.

(deffacts <deffacts-nane>
[<doc- conment >]
<f act >+)

The primary purpose of the <def f act s- name> isdocumentation. A def f act s instance can contain any number of
facts. Any unordered factsin adef f act s instance must have previously been defined viaadef t enpl at e construct
when thedef f act s isparsed. The following isavalid deffacts construct:

(def facts aut onobil es
(autonmobi |l e (make Chrysler) (nodel LeBaron) (year 1997))
(autonmobi |l e (make Ford) (nodel Contour) (year 1996))

file:///D/README.html (8 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
(autonmobi | e (make Nash) (nodel Ranbler) (year 1948)))

2.14 Definstances

What def f act s aretodef t enpl at es, def i nst ances aretodef cl asses. Whileadef f act s construct defines
an initial set of factsto the Rete engine, thedef i nst ance construct tells Jess that one particular Java object should be
treated as if it were afact and be matched by def t enpl at e patterns defined in def cl ass constructs. Again, we'll defer
discussion until we're in a better position to understand the mechanics involved.

2.15 Defrules

The main purpose of an expert shell like Jessis to support the execution of rules. Rulesin Jess are somewhat like the
IF...THEN... statements of other programming languages. In operation, Jess constantly tests to seeif any of the IFs become
true, and executes the corresponding THENS. (Actualy, it doesn't work quite thisway, but thisis a good way to imagine
things. See How Jess Works for an explanation closer to the truth.) The intelligence embedded in an intelligent rule-based

system isencoded in therules. The def r ul e construct is used to define arule to Jess:

(defrul e <defrul e-nanme>

[<doc- conment >]

[<sal i ence-decl arati on>]

[[<pattern-binding> <-] <pattern>]*

=>

<acti on>*)
Basicaly, arule consists of alist of patterns (the IF part on the rul€'s |eft-hand-side or LHS) and alist of actions (the THEN
part on the rul€'s right-hand-side or RHS). The patterns are matched against the fact list. When facts are found that match all
the patterns of arule, the rule becomes activated, meaning it may be fired (have its actions executed).

Note: The patterns on rule LHSs are matched against the fact-list asif they were facts - they are NOT function
calls! The following rule does NOT work:

(defrule wong-rul e

(eq (+ 2 2) 4)

=>

(printout t "Just as | thought, 2 + 2 = 41" crlf))
Thisrulewill NOT fire just because the function call (eq (+ 2 2) 4) would evaluate to true. Instead, Jess will try
to find afact on the fact-list that looks like (eq 4 4). Unless you have previously asserted such afact, thisrule
will NOT be activated and will not fire. If you want to fire arule based on the evaluation of a function, you can
use the test CE.

An activated rule may become deactivated before firing if the facts that matched its patterns are retracted, or removed from
the fact list, while it iswaiting to be fired. Here is an example of asimple rule:

(defrule exanple-1
"Announce 'a b c¢' facts”
(a b c)
=>
(printout t "Saw 'a b c¢'!" crlf))
To seethisrulein action, enter it at the Jess> prompt, assert thefact (a b c¢) , thenther un command to start the Jess
engine. You'll get some interesting additional information by first issuing thewat ch al | command:

Jess> (cl ear)
TRUE
Jess> (watch all)
TRUE
Jess> (defrule exanple-1
"Announce 'a b c¢' facts"
(a b c)

file:///D/README.html (9 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
=>
(printout t "Saw 'a b c¢c'!" crlf))
exanpl e-1: +1+1+1+1+t
TRUE
Jess> (assert (a b c))
==> Activation: exanple-1: f-0
==> (a b ¢)
<Fact - 0>
Jess> (run)
FI RE exanple-1 f-0
Saw "a b c'!
TRUE
Jess>

When you enter the rule, you see the sequence of symbols+1+1+1+1+t . Thistells you something about the way that Jess
compiled the rule you wrote into the internal rule representation. Then when you assert the fact, Jess responds by telling you
that the new fact was assigned the numeric fact identifier O (f - 0), and that it is an ordered fact with head a and additional
fieldsb and c. Then it tells you that the rule example-1 is activated by the fact f-0, that fact you just entered. When you

type ther un command, you see an indication that your rule has been fired, including alist of the relevant fact IDs. Theline
"Saw 'a b c'!" istheresult the execution of your rule.

Multiple activated rules are fired in order of salience (see Salience). Within a given salience value, the order in which rules
will fireis given by the current conflict resolution strategy. Seetheset - st r at egy command for details. Y ou can see the
list of activated, but not yet fired, rules with the command.

If al the patterns of arule had to be given literaly as above, Jess would not be very powerful. However, patterns can also
include wildcards and various kinds of predicates (comparisons and boolean functions). Y ou can specify a variable name
instead of avalue for afield in any of arule's patterns (but not the pattern's head). A variable matches any value in that
position within arule. For example, therule:

(defrul e exanpl e-2

(a ?x ?y)
=
(printout t "Saw 'a " ?2x " " 2?2y """ crlf))

will be activated each time any fact with head a having two fieldsisasserted: (a b ¢),(a 1 2),(a a a),andso
forth. Asin the example, the variables thus matched in the patterns (or LHS) of arule are available in the actions (RHS) of
the samerule.

Each such variable field in a pattern can aso include any number of tests to qualify what it will match. Tests follow the
variable name and are separated from it and from each other by ampersands. (The variable name itself is actually optional.)
Tests can be:

« A literal value (in which case the variable matches only that value).

« Another variable (which must have been matched earlier in the rule's LHS). Thiswill constrain the field to contain
the same value as the variable was first bound to.

« A colon (:) followed by afunction call, in which case the test succeeds if the function returns the special value
TRUE. These are called predicate constraints.

« Anequassign (=) followed by afunction call. In this case the field must match the return value of the function call.
These are called return value constraints. Note that both predicate constraints and return-value constraints can refer
to variables bound elsewhere in this or any preceding pattern in the same defrule. Note: pretty-printing arule
containing areturn value contstraint will show that it has been transformed into an equivalent predicate constraint.

« Any of the other options preceded by atilde (~), in which case the sense of the test is reversed (inequality or false).
Here's an example of arule that uses several kinds of tests:

(defrul e exanpl e-3
(not-b-and-c ?nl&-b ?n2&-c)

file:///D/README.html (10 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

(different ?2dl ?d2&-?d1)

(sane ?s 7?s)

(rore-than-one-hundred ?m& (> ?m 100))

=>

(printout t "Found what | wanted!" crlf))
Thefirst pattern will match afact with head not - b- and- ¢ with exactly two fields such that the first isnot b and the
second is not ¢. The second pattern will match any fact with head di f f er ent and two fields such that the two fields have
different values. The third pattern will match afact with head sanme and two fields with identical values. The last pattern
matches a fact with head nor e- t han- one- hundr ed and asingle field with a numeric value greater than 100.

A few more details about patterns: you can match afield without binding it to a variable by omitting the variable name and
using just a question mark (?) as a placeholder. Y ou can match any number of fields using a multivariable (one starting
with $?):
Jess> (defrul e exanpl e-4
(grocery-list $?list)

=>
(printout t "I need to buy " $?list crif))
TRUE

Jess> (assert (grocery-list eggs ml k bacon))
TRUE

Jess> (run)
| need to buy (eggs m | k bacon)
TRUE

And finally, to access aglobal variable on the left-hand side of arule, you must use the get-var function.
2.15.1 Pattern bindings.

Sometimes you need a handle to an actual fact that helped to activate arule. For example, when the rule fires, you may need
to retract or modify the fact. To do this, you use a pattern-binding variable:
(defrul e exanpl e-5
?fact <- (command "retract ne")
=>
(retract ?fact))
The variable (?f act , in this case) is assigned the fact ID of the particular fact that activated the rule.

2.15.2 Salience.

Rules normally fire in an order related to which rules were most recently activated. Seetheset - st r at egy command for
details. To force certain rulesto always firefirst or last, rules can include a salience declaration:

(defrul e exanple-6

(declare (salience -100))

(command exit-when-idle)

=>

(printout t "exiting..." crlf))
Declaring alow salience value for arule makesit fire after al other rules of higher salience. A high value makes arulefire
before all rules of lower salience. The default salience value is zero. Salience values can be integers, global variables, or
function calls. See the set-salience-eval uation command for details about when such function calls will be evaluated.

2.15.3 Not patterns.

A pattern can be enclosed in alist with not asthe head. In this case, the pattern is considered to match if afact which
matches the pattern is not found. For example:

(defrul e exanpl e-7

file:///D/README.html (11 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

(person ?x)

(not (married ?x))

=>

(printout t ?x " is not married!" crlf))
Note that anot pattern cannot contain any variables that are not bound before that pattern (sinceanot pattern does not
match any facts, it cannot be used to define the values of any variables!) Y ou can use blank variables, however (ablank
variableisabare ? or $?). A not pattern can similarly not have a pattern binding.

2.15.4 The t est conditional element (CE).

A pattern witht est asthe head is special; the body consists not of slot tests but of a single function which is evaluated and
whose truth determines whether the pattern matches. For example:
(defrul e exanpl e-8
(person (age ?x))
(test (> ?x 30))
=>
(printout t ?x " is over 30!'" crlf))
Notethat at est pattern, likeanot , cannot contain any variables that are not bound before that pattern. t est and not
may be combined:
(not (test (eq ?X 3)))
is equivalent to:
(test (neq ?X 3))

2.15.5 The uni que conditional element.

A pattern can be enclosed in alist with uni que asthe head. Thisisahint to Jess that only one fact could possibly satisfy a
given pattern, given matches for the preceding patternsin that rule. Here's an example:
(defrul e uni que-deno

(tax-form (soci al -security-nunber ?nunm)

(uni que (person (social-security-nunber ?num (nanme ?nane)))

=>

(printout t "Auditing " ?nane "..." crlf))
Heretheuni que CE is providing a hint to Jess that only one person can have agiven Social Security number. Given this
knowledge, Jess knows that once it has found the person that matches a given tax form, it doesn't need to look any further.
In practice, this can result in performance gains of 20-30% on real problems!

uni que may not be combined in the same patten with either t est or not CEs.

uni que wasnew in Jess 4.1, and is my own invention. I'm interested in hearing any feedback related to this feature.
2.16 Defglobals

Jess can support global variables that are visible from the command-prompt or inside any rule or deffunction. Y ou can
define them using the defglobal construct:

(def gl obal
[<varnamel> = <val uel>] *)

Note that defglobals are reset to their assigned values by the (reset) command. If the <value> is afunction call, this function
will be evaluated each time (reset) is called. Y ou can change this behaviour with the set-reset-globals command.

2.17 Things Not Implemented In Jess

Jess does not implement all features of al CLIPS constructs. Thislist tries to explain some of what's missing from Jess to
those who know CLIPS. If you're not already a CLIPS user, you can skip this section.

file:///D/README.html (12 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
2.17.1 Defrules

« Theand and or conditional elements (CES) are not supported on rule LHSs. not is supported, however. Y ou can
generally use multiple rules to simulate the effect of an and or or CE.

« The| connective constraint is not supported. Note that instead of writing a pattern like:
(foo bar| baz)
you can write:
(foo ?x& (or (eq ?X bar) (eq ?X baz)))
to achieve the same effect in Jess.

2.17.2 Deffunctions.
Forward declarations of mutually recursive functions are not needed in Jess and will not parse.
2.17.3 Deftemplates.

The only supported slot attribute in Jess arethe def aul t and def aul t - dynam c attributes. In particular, t ype will
parse, but isignored at runtime.

2.17.4 COOL, FuzzyCLIPS, wxCLIPS, etc.

Jess does not implement any features of these CLIPS extensions. Note that def cl ass and def i nst ance are keywords
in CLIPS that form part of COOL. Although these keywords exist in Jess, their syntax and precise meaning is different. Y ou
should find that the functionality they provide (pattern matching on Java Beans) is a satisfactory replacement for COOL.

2.17.5 Modules.

Jess does not implement CLIPS modules. However, since Jess itself is object-oriented, you can instantiate multiple Jess
systems and get them to communicate via the external function interface.

3 Jess Function Guide

In this section, every Jess language function shipped with Jess version 4.3 is described. Some of these functions areintrinsic
functions while others are Userfunctions and may not be available to all Jess code. All of these functions areinstalled into
the command-line version of Jess; to use afunction not marked (built-in) in your own programs, you need to add the
appropriate Userpackage using Ret e. addUser package(new <pkgnane>()) . The package for each functionis
listed below.

Note: many functions documented as requiring a specific minimum number of arguments will actually return sensible
results with fewer; for example, the + function will return the value of a single argument asitsresult. This behavior isto be
regarded as undocumented and unsupported. In addition, all functions documented as requiring a specific number of
arguments will not report an error if invoked with more than that number; extra rguments are simply ignored.

(* <nuneric-expressi on> <nuneri c- expressi on>+)

Package:

(built-in)
Arguments:

Two or more numeric expressions
Returns:

Number

file:///D/README.html (13 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
Description:

Returns the products of its arguments. The return valueis an | NTEGER unless any of the arguments are FLOAT, in
which caseitisaFLOAT.

(** <nuneric-expression> <numeri c-expressi on>)

Package:

j ess. Mat hFuncti ons
Arguments:

Two numeric expressions
Returns:

Number
Description:

Raisesitsfirst argument to the power of its second argument (using Java's Mat h. pow() function). Note: the return
value is NaN (not a number) if both arguments are negative.

(+ <numeric-expressi on> <nuneri c- expressi on>+)

Package:
(built-in)
Arguments:
TwO Oor more nuMeric expressions
Returns:
Number
Description:

Returns the sum of its arguments. The return valueis an | NTEGER unless any of the arguments are FLOAT, in which
caseitisaFLOAT. Note: the return value is the value of the single numeric expression if only one argument is
supplied.

(- <numeri c-expressi on> <numeri c- expr essi on>+)

Package:
(built-in)
Arguments:
TwoO or more numeric expressions
Returns:
Number
Description:

Returns the first argument minus all subsequent arguments. The return valueisan | NTEGER unless any of the
arguments are FLOAT, in which caseit isa FLOAT.

(/ <nuneric-expressi on> <nuneri c- expressi on>+)

Package:

(built-in)
Arguments:

Two or more numeric expressions
Returns:

file:///D/README.html (14 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
Number
Description:
Returns the first argument divided by all subsequent arguments. The return valueis a FLOAT.

(< <numeri c-expressi on> <nuneri c- expressi on>+)

Package:
(built-in)
Arguments:
TwO Oor more nuMmeric expressions
Returns:
Boolean
Description:
Returns TRUE if each argument is lessin value than the argument following it; otherwise, returns FALSE.

(<= <nuneri c- expressi on> <nuneri c- expressi on>+)

Package:
(built-in)
Arguments:
TwoO or more numeric expressions
Returns:
Boolean
Description:

Returns TRUE if the value of each argument isless than or equal to the value of the argument following it; otherwise,
returns FALSE.

(<> <numeri c- expressi on> <nuneri c- expressi on>+)

Package:
(built-in)
Arguments:
Two or more numeric expressions
Returns:
Boolean
Description:

Returns TRUE if the value of the first argument is not equal in value to all subsequent arguments; otherwise returns
FALSE.

(= <nuneri c-expressi on> <nuneri c- expressi on>+)

Package:

(built-in)
Arguments:

TwoO Oor more numeric expressions
Returns:

Boolean

file:///D/README.html (15 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
Description:

Returns TRUE if the value of the first argument is equal in value to all subsequent arguments; otherwise, returns
FALSE. Theinteger 2 and the float 2.0 are =, but not eq.

(> <numeri c-expressi on> <nuneri c- expressi on>+)

Package:
(built-in)
Arguments:
Two or more numeric expressions
Returns:
Boolean
Description:
Returns TRUE if the value of each argument is less than that of the argument following it; otherwise, returns FALSE.

(>= <nuneri c-expressi on> <nuneri c- expressi on>+)

Package:
(built-in)
Arguments:
Two or more numeric expressions
Returns:
Boolean
Description:

Returns TRUE if the value of each argument is greater than or equal to that of the argument following it; otherwise,
returns FALSE.

(abs <nuneri c-expressi on>)

Package:
j ess. Mat hFuncti ons
Arguments:
One numeric expression
Returns:
Number
Description:
Returns the absolute value of its only argument.

(agenda)

Package:
jess.MiscFunctions
Arguments:
None
Returns:
NIL
Description:

file:///D/README.html (16 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell
Displays alist of rule activations to the WSTDOUT router.

(and <expressi on>+)

Package:
(built-in)
Arguments:
One or more expressions
Returns:
Boolean
Description:

Returns TRUE if al arguments evaluate to a non-FAL SE value; otherwise, returns FALSE.
(assert <RHS-pattern>+)

Package:
(built-in)
Arguments:
One or more facts (not fact-1Ds)
Returns:
Fact-ID or FALSE
Description:

Adds afact to the fact list. Asserts all facts onto the fact list; returns the fact-1D of last fact asserted or FALSE if no
facts were successfully asserted (for example, if all facts given are duplicates of existing facts.)

(assert-string <string-expression>)

Package:

(built-in)
Arguments:

One string representing afact
Returns:

Fact-1D or FALSE
Description:

Convertsa string into afact and assertsit. Attempts to parse string as afact, and if successful, returns the value
returned by assert with the same fact. Note that the string must contain the fact's enclosing parentheses.

(bag <bag- command> <bag- ar gunent s>+)

Package:
j ess. BagFuncti ons
Arguments:
An atom (a sub-command) and one or more additional arguments
Returns:
(Varies)
Description:
The bag command lets you manipulate Java hashtables from Jess. The net result is that you can create any number of

file:///D/README.html (17 of 73) [5/3/1999 2:51:04 PM]

Jess, the Java Expert System Shell

associative arrays or property lists. Each such array or list has a name by which it can be looked up. The lists can
contain other lists as properties, or any other Jess data type.

The bag command does different things based on its first argument. It'sreally seven commandsin one:

« Creat e accepts a String, the name of a new Bag to be created. The bag object itself is returned. For example:
Jess> (bag create ny-bag) <External - Address> Jess>

« del et e acceptsthe name of an existing bag, and deletes it from the list of bags.

« f i nd acceptsthe name of abag, and returns the corresponding bag object, if one exists, or ni | .

« |1 st returnsalist of the names of all the existing bags, as a multifield.

« set accepts as arguments a bag, a String property name, and any Jess value as its three arguments. The named
property of the given bag is set to the value, and the value is returned.

« get acceptsasarguments abag and a String property name. The named property isretrieved and returned, or ni | if
there is no such property. For example:

Jess> (defgl obal ?*bag* = 0)

TRUE

Jess> (bind ?*bag* (bag create ny-bag))
<Ext er nal - Addr ess>

Jess> (bag set ?*bag* ny-prop 3.0)

3.0

Jess> (bag get ?*bag* ny-prop)

3.0

e props accepts abag as the single argument and returns a multifield consisting of alist of the names of all the
properties of that bag.

(bat ch)

Package:
j ess. M scfunctions
Arguments:
One string or atom representing the name of afile
Returns:
(Varies)
Description:
Attempts to parse and evaluate the given file as Jess code. If successful, returns the return value of the last expression
inthefile.

Note: the argument must follow Jess' rules for valid atoms or strings. On UNIX systems, this presents no particular
problems, but Win32 filenames may need special treatment. In particular: pathnames should use either \\' (double
backslash) or '/ (forward slash) instead of '\' (single backslash) as directory separators; and pathnames which include
acolon (") or aspace character (' ") must be enclosed in double quotes.

(bi nd <vari abl e> <expressi on>*)

Package:

(built-in)
Arguments:

A variable name and any value
Returns:

(Varies)

file:///D|/README.html (18 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
Description:

Binds a variable to a new value. Assigns the given value to the given variable, creating the variable if necessary. Note
that (asin CLIPS) thisworks best in rules and deffunctions, and not from the command prompt. Returns the given
value.

(bui l d <l exene-expressi on>)

Package:
j ess. M scfunctions
Arguments:
One string representing some Jess code
Returns:
(Varies)
Description:

Evaluates a string as though it were entered at the command prompt. Only allows constructs to be evaluated.
Attempts to parse and evaluate the given string as Jess code. If successful, returns the return value of the last
expression in the string. Thisistypically used to define rules from Jess code. For instance:

(build "(defrule foo (foo) => (bar))")
(call (<external -address> | <string-expression>) <string-expression>
<cal | - ar gunent s>+)
Package:

jess.reflect. Refl ect Functi ons
Arguments:

an external address or String, a String, and any number of additional arguments (see below)
Returns:

(Varies)
Description:

Calls a Java method on the given object, or a static method of the class named by the first argument. The second
argument is the name of the method, and subsequent arguments are passed to the method. Arguments are promoted
and overloaded methods selected precisely asfor new. The return value is converted to a suitable Jess value before

being returned. Array return values are converted to multifields.

Thefunctor cal | may be omitted if the method being called is non-static and the object is represented by asimple
variable. The following two method calls are equivalent:

;; These are | egal and equival ent
(call ?vector addEl enent (new java.lang.String "Foo"))
(?vector addEl enent (new java.lang. String "Foo"))

cal I may not be omitted if the object comes from the return value of another function call:
;; This is illegal
((new j ava. |l ang. Vect or 10) addEl enent (new java.lang. String "Foo"))
(cl ear)

Package:
(built-in)

Arguments:
None

file:///D|/README.html (19 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Returns.
TRUE
Description:

Clears Jess. Deletes dl rules, deffacts, defglobals, deftemplates, facts, activations, and so forth. Userfunctions are not
deleted.

(close [<router-identifier>])

Package:
(built-in)
Arguments:
One or more router identifiers (atoms)
Returns:
TRUE
Description:

Closes any 1/0 routers associated with the given name by calling cl ose() on the underlying stream, then removes
the routers. Any subsequent attempt to use a closed router will report bad r out er . See open.

(compl enment$ <mul tifield-expression> <multifield-expression>)

Package:
jess.MultiFunctions
Arguments:
Two multifields
Returns:
Multifield
Description:
Returns anew multifield consisting of al elements of the second multifield not appearing in the first multifield.

(create$ <expressi on>*)
Package:

jess. Multi Functions
Arguments:

Zero or more expressions
Returns:

Multifield
Description:

Appends its arguments together to create a multifield value. Returns a new multifield containing all the given
arguments. Note: multifields must be created explicitly using this function or others that return them. Multifields
cannot be directly parsed from Jess input.

(del ete$ <mul tifiel d-expressi on> <begi n-integer-expressi on>
<end-i nt eger - expr essi on>)

Package:
jess.Multi Functi ons
Arguments:

file:///D|/README.html (20 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
A multifield and two integer expressions
Returns:
Multifield
Description:

Deletes the specified range from amultifield value. The first numeric expression is the 1-based index of the first
element to remove; the second is the 1-based index of the last element to remove.

(div <nuneri c-expressi on> <nuneri c- expressi on>+)

Package:

j ess. Mat hFuncti ons
Arguments:

Two or more numeric expressions
Returns:

Numbers
Description:

Returns the first argument divided by all subsequent arguments using integer division. Quotient of the values of the
two numeric expressions rounded to the nearest integer.

(e)

Package:
j ess. Mat hFuncti ons
Arguments:
None
Returns:
Number
Description:
Returns the transcendental number e.

(engi ne)

Package:
j ess. M scFuncti ons
Arguments:
None
Returns:
External address
Description:
Returns an external-address object containing the Rete engine in which the function in called.

(eq <expressi on> <expressi on>+)
Package:

(built-in)
Arguments:

Two or more arbitrary arguments
Returns:

file:///D|/README.html (21 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
Boolean
Description:

Returns TRUE if the first argument is equal in type and value to all subsequent arguments. For strings, this means
identical contents. Usesthe Java Cbj ect . equal s() function, so can be redefined for external types. Note that the
integer 2 and the floating-point number 2. 0 are not eq, but they areeq* and =.

(eg* <expressi on> <expressi on>+)

Package:
(built-in)
Arguments:
Two or more arbitrary arguments
Returns:
Boolean
Description:
Returns TRUE if the first argument is equivalent to all the others. Uses numeric equality for numeric types, unlike eq.
Note that the integer 2 and the floating-point number 2.0 are not eq, but they areeq* and =.
(eval <l exene-expression>)
Package:
(built-in)
Arguments:
One string containing a valid Jess expression
Returns:
(Varies)
Description:
Evaluates a string as though it were entered at a command prompt. Only allows functions to be evaluated. Evaluates
the string asif entered at the command line and returns the result.
(evenp <expression>)
Package:
j ess. PredFuncti ons
Arguments:
One numeric expression
Returns:
Boolean
Description:
Returns TRUE for even numbers; otherwise, returns FALSE. Results with non-integers may be unpredictable.

(exit)

Package:
(built-in)

Arguments:
None

Returns:
Nothing

file:///D|/README.html (22 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
Description:
Exits Jess and halts Java.

(exp <nuneri c-expressi on>)

Package:
j ess. Mat hFuncti ons
Arguments:
One numeric expression
Returns:
Number
Description:
Raises the value e to the power of its only argument.

(expl ode$ <string-expression>)

Package:
jess. Multi Functions
Arguments:
One string
Returns:
Multifield
Description:

Creates amultifield value from a string. Parses the string asif by a succession of r ead calls, then returns these
individual values as the el ements of a multifield.

(external - addressp <expressi on>)

Package:
j ess. PredFuncti ons
Arguments:
One expression
Returns:
Boolean
Description:
Returns TRUE or FAL SE as the given expression is an external -address.

(facts)

Package:
(built-in)
Arguments:
None
Returns:
TRUE
Description:
Printsalist of all facts on the fact list.

file:///D|/README.html (23 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

(fetch <string or atonp)

Package:
(built-in)
Arguments:
One string or atom
Returns:
(varies)
Description:
Retrieves and returns any value previously stored by the st or e function under the given name, or ni | if thereis

none. Analogousto thef et ch() member function of the Ret e class. See the section "Using store and fetch” for
details.

(first$ <multifield-expression>)

Package:
jess. Multi Functions
Arguments:
One multifield
Returns:
Multifield
Description:
Returns the first field of amultifield.as a new 1-element multifield.

(fl oat <nuneri c-expressi on>)

Package:

j ess. Mat hFuncti ons
Arguments:

One numeric expression
Returns:

Floating-point number
Description:

Convertsits only argument to afloat.
(fl oatp <expression>)

Package:
j ess. PredFuncti ons
Arguments:
One numeric expression
Returns:
Boolean
Description:
Returns TRUE for floats; otherwise, returns FALSE.

(foreach <variable> <nultifiel d-expression> <action>*)

file:///D|/README.html (24 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Package:
(built-in)
Arguments:
A variable, amultifield expression, and zero or more arguments
Returns:
Varies
Description:

The named variable is set to each of the valuesin the multifield in turn; for each value, all of the other arguments are
evaluated in order. Ther et ur n function can be used to break the iteration.

Example:

(foreach ?x (create$ a b c d) (printout t ?x crlf))
(format <router-identifier> <string-expression> <expressi on>*)

Package:
j ess. M scFuncti ons
Arguments:
A router identifier, aformat string, and zero or more arguments
Returns:
A string
Description:
Sends formatted output to the specified logical name. Formats the arguments into a string according to the format
string, which isidentical to that used by pri nt f inthe C language (find a C book for more information). Returns
the string, and optionally prints the string to the named router. If you passni | for the router name, no printing is
done.
(get <external -address> <string-expression>)
Package:
jess.refl ect. Refl ect Functi ons
Arguments:
An external address and a string.
Returns:
(Varies)
Description:

Retrieves the value of a Java Bean's property. The first argument is the object and the second argument is the name of
the property. The return value is converted to a suitable Jess value exactly asfor call.

(get-nmenber (<external-address> | <string-expression>) <string-expression>)
Package:
jess.refl ect, Refl ect Functi ons
Arguments:
An external address or a string, and a string.
Returns:
(Varies)
Description:

file:///D|/README.html (25 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Retrieves the value of a Java object's data member. The first argument is the object (or the name of aclass, for astatic
member) and the second argument is the name of the field. The return value is converted to a suitable Jess value
exactly asfor call.

(get-reset-gl obal s)

Package:
jess.MiscFunctions
Arguments:
None
Returns:
Boolean
Description:
Indicates the current setting of global variable reset behavior. See set-reset-globals for an explanation of this property.

get-sal i ence-eval uati on

Package:
jess.MiscFunctions
Arguments:
None
Returns:
Atom
Description:
Indicates the current setting of salience evaluation behavior. See set-salience-evaluation for an explanation of this
property.

(gensynt)

Package:
(built-in)
Arguments:
None
Returns:
Atom
Description:
Returns an atom which consists of the letters gen plus an integer. Use set gen to set the value of the integer to be

used by the next gensym call. Note that, unlike in CLIPS, these symbols are not guaranteed to be unique. Thiswill
change in afuture release.

(get-var <l|exene-expression>)

Package:

(built-in)
Arguments:

A string or atom
Returns:

(Varies)

file:///D|/README.html (26 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Description:

Fetches the value of avariable, given the name of the variable as a string or atom. (Rarely needed, but when you need
it, you'll know.) Most commonly, get-var is used to fetch the value of aglobal variable on the LHS of arule.

(halt)

Package:
(built-in)
Arguments:
None
Returns:
TRUE
Description:
Halts rule execution. No effect unless called from the RHS of arule.

(i f <expression> then <action>* [el se <action>*])

Package:
(built-in)
Arguments:

A Boolean variable or function call returning Boolean, the atom t hen, and any number of additional expressions,
optionally followed by the atom el se another list of expression.

Returns:
(Varies)

Description:
Allows conditional execution of agroup of actions. The boolean expression is evaluated. If it does not evaluate to
FALSE, thefirst list of expressionsis evaluated, and the return value is that returned by the last expression of that list.

If it does evaluate to FAL SE, and the optional second list of expressionsis supplied, those expressions are eval uated
and the value of the last is returned.

Example:
(if (> ?x 100)
t hen
(printout t "X is big" crlf)
el se
(printout t "X is small" crlf))

(i npl ode$ <multifield-expression>)

Package:
jess.MiltiFunctions
Arguments:
One multifield
Returns:
String
Description:

Creates a string from a multifield value. Converts each element of the multifield to a string, and returns these strings
concatenated with single intervening spaces.

file:///D|/README.html (27 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

(insert$ <nultifield-expression> <integer-expression>
<single-or-multifield-expression>+)

Package:
jess. Multi Functions
Arguments:
A multifield, an integer, and one more more multifields
Returns:
A multifield
Description:

Inserts one or more values in amultifield. Inserts the elements of the one or more multifields so that they appear
starting at the given 1-based index of the first multifield.

(i nteger <numeric-expressi on>)

Package:

j ess. Mat hFuncti ons
Arguments:

One numeric expression
Returns:

Integer
Description:

Convertsits only argument to an integer. Truncates any fractional component of the value of the given numeric
expression and returns the integral part.

(i ntegerp <expression>)

Package:
j ess. PredFuncti ons
Arguments:
One expression
Returns:
Boolean
Description:
Returns TRUE for integers; otherwise, returns FALSE.

(intersection$ <multifield-expression> <multifield-expression>)

Package:
jess.Multi Functions
Arguments:
Two multifields
Returns:
Multifield
Description:

Returns the intersection of two multifields. Returns a multifield consisting of the elements the two argument
multifields have in common.

file:///D|/README.html (28 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
(j ess-versi on- nunber)

Package:
(built-in)
Arguments:
None
Returns:
Float
Description:
Returns aversion number for Jess; currently 4.3 .

(j ess-version-string)

Package:
(built-in)
Arguments:
None
Returns:
String
Description:
Returns a human-readabl e string descriptive of this version of Jess.

(length$ <mul tifield-expression>)

Package:
jess.Multi Functions
Arguments:
Multifield
Returns:
Integer
Description:
Returns the number of fieldsin amultifield value.

(1 exenmep <expression>)

Package:
j ess. PredFuncti ons
Arguments:
Any expression
Returns:
Boolean
Description:
Returns TRUE for symbols and strings; otherwise, returns FAL SE.

(I'ist-function$)

Package:

file:///D|/README.html (29 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
(built-in)
Arguments:
None
Returns:
Multifield
Description:

Returns amultifield list of all the functions currently callable, including intrinsics, deffunctions, and Userfunctions.
Each function name is an atom. The names are sorted in aphabetical order.

(l oad-facts <fil e-nanme>)

Package:
(built-in)
Arguments:
A string or atom representing the name of afile of facts
Returns:
Boolean
Description:

Asserts facts loaded from afile. The argument should name afile containing alist of facts (not deffacts constructs,
and no other commands or constructs). Jess will parse the file and assert each fact. The return value is the return
value of assert when asserting the last fact. In an applet, | oad- f act s will useget Docunent Base() tofind the
named file.

Note: See the batch command for a discussion about specifying filenamesin Jess.

(l oad-function <cl ass- nane>)

Package:
j ess. M scFuncti ons
Arguments:
One string or atom representing the name of a Java class
Returns:
Boolean
Description:

The argument must be the fully-qualified name of a Java class that implements the Userfunction interface. The class
isloaded in to Jess and added to the engine, thus making the corresponding command available. See Extending Jess
with Java for more information.

(1 oad- package <cl ass-nane>)

Package:
j ess. M scFuncti ons
Arguments:
One string or atom, the name of a Java class
Returns:
Boolean
Description:
The argument must be the fully-qualified name of a Java class that implements the Userpackage interface. The class

file:///D|/README.html (30 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

isloaded in to Jess and added to the engine, thus making the corresponding package of commands available. See
Extending Jess with Java for more information.

(1 og <nuneri c- expressi on>)

Package:
j ess. Mat hFuncti ons
Arguments:
One numeric expression
Returns:
Number
Description:
Returns the logarithm base e of its only argument.

(10910 <nuneri c-expressi on>)

Package:
j ess. Mat hFuncti ons
Arguments:
One numeric expression
Returns:
Number
Description:
Returns the logarithm base-10 of its only argument.

(1 owcase <I| exene-expressi on>)

Package:
j ess. StringFunctions
Arguments:
One atom or string.
Returns:
String
Description:
Converts uppercase characters in a string or symbol to lowercase. Returns the argument as an all-lowercase string.

(max <nuneri c- expressi on>+)

Package:
j ess. Mat hFuncti ons
Arguments:
One or more numerical expressions
Returns:
Number
Description:
Returns the value of its largest numeric argument

(menmber$ <single-field-expression> <multifield-expression>)

file:///D|/README.html (31 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Package:

jess. Multi Functions
Arguments:

A value and amultifield
Returns:

Integer or FALSE
Description:

Returns the position (1-based index) of a single-field value within amultifield value; otherwise, returns FALSE.
(m n <nuneri c- expressi on>+)

Package:
j ess. Mat hFuncti ons
Arguments:
One or more numeric expressions
Returns:
Number
Description:
Returns the value of its smallest numeric argument.

(nmod <nuneri c- expressi on> <nuneri c- expressi on>)

Package:
(built-in)
Arguments:
Two integer expressions
Returns:
I nteger
Description:

Returns the remainder of the result of dividing the first argument by its second (assuming that the result of the
division must be an integer).

(nodi fy <fact-specified> <RHS-sl| ot >*)

Package:
(built-in)
Arguments:
A fact-ID and zero or more two-element lists
Returns:
Fact-1D
Description:

Modifies the deftemplate fact in the fact list. The fact-ID must belong to an unordered fact. Each list istaken asthe
name of adlot in thisfact and a new value to assign to the slot. A new fact is asserted which is similar to the given
fact but which has the specified slots replaced with new values. The original fact is retracted. The fact-ID of the new
fact isreturned. Modifying adef i nst ance fact will cause the appropriate object properties to be set aswell.

(multifieldp <expression>)

file:///D|/README.html (32 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Package:
j ess. PredFuncti ons
Arguments:
Any value
Returns:
Boolean
Description:
Returns TRUE for multifield values; otherwise, returns FAL SE.

(neq <expressi on> <expressi on>+)

Package:
(built-in)
Arguments:
Two or more values
Returns:
Boolean
Description:
Returns TRUE if the first argument is not equal in type and value to all subsequent arguments (see eq).

(new <string-expressi on> <new ar gument s>+)
Package:

jess.refl ect. Refl ect Functi ons
Arguments:

A string and one or more arguments
Returns:

Boolean
Description:

Creates a new Java object and returns an EXTERNAL_ ADDRESS value containing it. The first argument is the
fully-qualified classname: j ava. uti | . Vect or , for example. The second and later arguments are constructor
arguments. The constructor will be chosen from among all constuctors for the named class based on afirst-best fit
algorithm. Built-in Jess types are converted as necessary to match available constructors. See the text for more
details.

(not <expressi on>)

Package:
(built-in)
Arguments:
One expression
Returns:
Boolean
Description:
Returns TRUE if its only arguments evaluates to FAL SE; otherwise, returns FALSE.

(nth$ <integer-expression> <nultifield-expression>)

file:///D|/README.html (33 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Package:
jess.Multi Functi ons
Arguments:
A number and amultifield
Returns:
(Varies)
Description:
Returns the value of the specified (1-based index) field of amultifield value.

(nunber p <expressi on>)

Package:
j ess. PredFuncti ons
Arguments:
One expression
Returns:
Boolean
Description:
Returns TRUE for numbers; otherwise, returns FALSE.

(oddp <i nteger-expressi on>)

Package:
j ess. PredFuncti ons
Arguments:
One integer expression
Returns:
Boolean
Description:
Returns TRUE for odd numbers; otherwise, returns FALSE; see evenp.

(open <file-name> <router-identifier> ["r"|"w'|"a"])

Package:
(built-in)
Arguments:
A file name, an identifier for the file (an atom), and optionally a mode string: one of r , w, a.
Returns:
Thefileidentifier
Description:

Opens afile. Subsequently, the given router identifier can be passed to pr i nt out , r ead, r eadl i ne, or any other
functions that accept I/O routers as arguments. By default, the file is opened for reading; if amode string is given, it
may be opened for reading only (r), writing only (w), or appending (a).

Note: See the batch command for a discussion about specifying filenamesin Jess.

(or <expression>+)

file:///D|/README.html (34 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
Package:
(built-in)
Arguments:
One or more expressions
Returns:
Boolean
Description:
Returns TRUE if any of the arguments evaluates to a non-FAL SE value; otherwise, returns FALSE.

(pi)

Package:
j ess. Mat hFuncti ons
Arguments:
None
Returns:
Number
Description:
Returns the number pi .

(ppdefrul e <rul e- name>)

Package:
j ess. M scFuncti ons
Arguments:
A string or atom representing the name of arule
Returns:
String containing rule's text
Description:
Displays the text of a given rule in a pretty-print representation.

(printout <router-identifier> <expression>*)

Package:
(built-in)
Arguments:
A router identifier followed by zero or more expressions
Returns:
ni |
Description:

Sends unformatted output to the specified logical name. Prints its arguments to the named router, which must be open
for output. No spaces are added between arguments. The special atom cr | f prints as a newline. The special router
namet can be used to signify standard output.

(random

Package:

file:///D|/README.html (35 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

j ess. Mat hFuncti ons

Arguments:
None

Returns:
Number

Description:
Returns a pseudo-random integer between 0 and 65536.

(read [<router-identifier>])

Package:
(built-in)
Arguments:
An optional input router identifier (when omitted t isthe default)
Returns:
(Varies)
Description:

Reads a single-field value from a specified logica name. Read a single atom, string, or number from the named
router, returns this value. The router t means standard input. Newlines are treated as ordinary whitespace; this
behaviour is different than in CLIPS, which returns newlines as tokens. If you need to parse text line-by-line, use
readl i ne and expl ode$.

(readline [<router-identifier>])

Package:
(built-in)
Arguments:
An optional input router identifier (when omitted t isthe default)
Returns:
String
Description:
Reads an entire line as a string from the specified logical name (router). The router t means standard input.

(replace$ <nmultifiel d-expression> <begi n-i nteger-expressi on>
<end-i nt eger - expressi on> <single-or-nultifield-expression>+)

Package:
jess.MultiFunctions
Arguments:
A multifield, two numeric expressions, and one or more multifields
Returns:
Multifield
Description:

Replaces the specified range of a multifield value with a set of values. The last one more more multifields are
inserted into the first multifield, replacing elements between the 1-based indices given by the two numeric arguments,
inclusive.

Example:

file:///D|/README.html (36 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Jess> (replace$ (create$ a b c) 2 2 (create$ x y z))
(axyzc)

(reset)

Package:
(built-in)
Arguments:
None
Returns:
TRUE
Description:

Removes al facts from the fact list, removes all activations, then assertsthefact (i ni ti al - fact), then assertsall
facts found in deffacts, asserts a fact representing each registered definstance, and (if the set-reset-globals property is
TRUE) initializes al defglobals.

(rest$ <nultifield-expression>)

Package:
jess. Multi Functions
Arguments:
One multifield
Returns:
Multifield
Description:
Returns all but the first field of amultifield as a new multifield.

(retract <integer-expression>+)

Package:
(built-in)
Arguments:
One or more fact-1Ds
Returns:
TRUE
Description:

Retracts the facts whose I Ds are given. Retracting a definstance fact will result in an implict call to undefinstance for
the corresponding object (the object will no longer be pattern-matched).

(return [<expression>])

Package:
(built-in)
Arguments:
An optional expression
Returns:
(Varies)
Description:

file:///D|/README.html (37 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
Returns the given value from a deffunction. Exits the deffunction immediately.

(round <nuneri c-expressi on>)

Package:

j ess. Mat hFuncti ons
Arguments:

One numeric expression
Returns:

I nteger
Description:

Rounds its argument toward the closest integer or negative infinity if exactly between two integers.
(rules)

Package:
(built-in)
Arguments:
None
Returns:
TRUE
Description:
Printsalist of all defrules.

(run)

Package:
(built-in)
Arguments:
None
Returns:
TRUE
Description:
Starts the inference engine. Jess will keep running until no more activationsremain or hal t iscalled.

(save-facts <fil e-nanme> [<deftenpl at e- nane>])

Package:
(built-in)
Arguments:
A filename, and optionally an atom
Returns:
Boolean
Description:

Saves facts to afile. Attempts to open the named file for writing, and then writes alist of all facts on the fact list to
thefile. Thisfileis suitable for reading with load-facts. If the optional second argument is given, only facts whose
head matches this atom will be saved. Does not work in applets.

file:///D|/README.html (38 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell
Note: See the batch command for a discussion about specifying filenamesin Jess.

(set <external -address> <string-expressi on> <expressi on>)
Package:
jess.reflect. Refl ect Functi ons
Arguments:
An external address, a string, and an expression
Returns:
The last argument
Description:

Sets a Java Bean's property to the given value. The first argument is the Bean object; the second argument is the name
of the property. The third value is the new value for the property; the same conversions are applied as for newand
call.

(set-nmenber (<external-address> | <string-expression>) <string> <expression>+)
Package: j ess. refl ect. Refl ect Functi ons

Arguments:

An external address or a string, a string, and one or more expressions
Returns:

The last argument
Description:

Sets a Java object's member variable to the given value. The first argument is the object (or the name of the class, in
the case of a static member variable). The second argument is the name of the variable. The third value is the new
value for the variable; the same conversions are applied asfor newand cal | .

(set-reset-globals (TRUE | FALSE | nil))

Package:
jess.MiscFunctions
Arguments:
One boolean value (TRUE or FALSE or nil)
Returns:
Boolean
Description:

Changes the current setting of the global variable reset behavior. If this property is set to TRUE (the default), then the
(reset) command reinitializes the values of global variablesto their initial values (if the initial value was afunction
call, the function call is reexecuted.) If the property is set to FALSE or nil, then (reset) will not affect global
variables. Note that in previous versions of Jess, defglobals were always reset; but if theinitial value was set with a
fucntion call, the function was not reevaluated. Now it is.

(set-salience-eval uati on (when-defined | when-activated | every-cycle))

Package:

jess.MiscFunctions
Arguments:

One of theatomswhen- def i ned, when- acti vat ed, orevery-cycl e
Returns:

One of the potential arguments (the previous value of this property)

file:///D|/README.html (39 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

Description:

Changes the current setting of the salience evaluation behavior. By default, arule's salience will be determined once,
when the rule is defined (when-defined.) If this property is set to when-activated, then the salience of each rule will

be redetermined immediately before each time it is placed on the agenda. If the property is set to every-cycle, then the
salience of every ruleis redetermined immediately after each time any rulefires.

(set-strategy (depth | breadth))
Package:

j ess. M scFuncti ons
Arguments:

An atom or string representing the name of a strategy (can be afully-qualified Java class name). You can usedept h
and br eadt h to represent the two built-in strategies.

Returns:
The previous strategy as an atom
Description:

L ets you specify the conflict resolution strategy Jess uses to order the firing of rules of equal salience. Currently,
there are two strategies available: depth (LIFO) and breadth (FIFO). When the depth strategy isin effect (the
default), more recently activated rules are fired before less recently activated rules of the same salience. When the
breadth strategy is active, rules of the same salience fire in the order in which they are activated. Note that in either
case, if several rules are activated ssimultaneoudly (i.e., by the same fact-assertion event) the order in which these
severa rulesfireis unspecified, implementation-dependent and subject to change. More built-in strategies may be
added in the future. Y ou can (perhaps) implement your own strategies in Java by creating a class that implements the
j ess. Strat egy interface and then specifying its fully-qualified classname asthe argument to set - st r at egy.
Details can be gleaned from the source. At this time, though, | think some of the methods you'd need to call are
package-protected.

(setgen <numeric-expressi on>)
Package:

j ess. M scFuncti ons
Arguments:

A numeric expression
Returns:

TRUE
Description:

Sets the starting number used by gensynt . Note that if this number has already been used, gensynt uses the next
larger number that has not been used.

(socket <Internet-hostnanme> <TCP-port-nunber> <router-identifier>)

Package:
j ess. M scFuncti ons
Arguments:
An Internet hostname, a TCP port number, and arouter identifier
Returns:
The router identifier
Description:
Somewhat equivalent to open, except that instead of opening afile, opens an unbuffered TCP network connection to
the named host at the named port, and installsit as a pair of read and write routers under the given name.

file:///D|/README.html (40 of 73) [5/3/1999 2:51:05 PM]

Jess, the Java Expert System Shell

(sqrt <numneri c-expressi on>)

Package:
j ess. Mat hFuncti ons
Arguments:
A numeric expression
Returns:
Number
Description:
Returns the square root of its only argument.

(store <string or atom> <expression>)

Package:
(built-in)
Arguments:
A string or atom and any other value
Returns:
(varies)
Description:
Associates the expression with the name given by the first argument, such that later calls to the fetch will retrieve it.
Analagoustothest or e() member function of thej ess. Ret e cl ass. See section on Using store

and fetch for nore details.
(str-cat <expression>*)

Package:
j ess. StringFunctions
Arguments:
Zero or more expressions
Returns:
String
Description:
Concatenates its arguments as strings to form a single string.

(str-conpare <string-expression> <string-expression>)

Package:
j ess. StringFunctions
Arguments:
Two strings
Returns:
I nteger
Description:

L exicographically compares two strings. Returns O if the strings are identical, a negative integer if thefirstis
lexicographically less than the second, a positive integer if lexicographically greater.

file:///D|/README.html (41 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell
(str-index <l|exeme-expression> <| exemne-expressi on>)

Package:

j ess. StringFunctions
Arguments:

Two atoms
Returns:

Integer or FALSE
Description:

Returns the position of the first argument within the second argument. Thisis the 1-based index at which the first
string first appears in the second; otherwise, returns FALSE.

(str-length <l exene-expression>)

Package:
j ess. StringFunctions
Arguments:
An atom
Returns:
I nteger
Description:
Returns the length of an atom in characters.

(stringp <expression>)

Package:
j ess. PredFuncti ons
Arguments:
One expression
Returns:
Boolean
Description:
Returns TRUE for strings; otherwise, returns FAL SE.

(sub-string <begi n-integer-expressi on> <end-i nt eger - expressi on>
<string-expressi on>)

Package:

j ess. StringFunctions
Arguments:

Two numbers and a string
Returns:

String
Description:

Retrieves a subportion from a string. Returns the string consisting of the characters between the two 1-based indices
of the given string, inclusive.

(subseg$ <nultifiel d-expression> <begi n-integer-expressi on>

file:///D|/README.html (42 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

<end- i nt eger - expr essi on>)

Package:
jess. Multi Functions
Arguments:
A multifield and two numeric expressions
Returns:
Multifield
Description:

Extracts the specified range from amultifield value consisting of the elements between the two 1-based indices of the
given multifield, inclusive.

(subsetp <multifield-expression> <nultifield-expression>)

Package:
jess. Mul ti Functi ons
Arguments:
Two multifields
Returns:
Boolean
Description:

Returns TRUE if the first argument is a subset of the second (i.e., all the elements of the first multifield appear in the
second multifield); otherwise, r et ur ns FALSE.

(sym cat <expressi on>*)

Package:
(built-in)
Arguments:
Zero or more expressions
Returns:
Atom
Description:
Concatenates its arguments as strings to form a single symbol.

(synbol p <expressi on>)

Package:
j ess. PredFuncti ons
Arguments:
One expression
Returns:
Boolean
Description:
Returns TRUE for symbols; otherwise, returns FALSE.

(system <| exene- expr essi on>*)

file:///D|/README.html (43 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

Package:

j ess. M scFuncti ons
Arguments:

Zero or more atoms
Returns:

TRUE
Description:

Appends its arguments to form a command which is then sent to the operating system. Executes the operating-system
command-line constructed by converting each argument to a string. Normally blocks (i.e., Jess stops until the applet
returns), but if the last argument is an ampersand (&), the program will run in the background.

(tine)

Package:
j ess. M scFuncti ons
Arguments:
None
Returns:
Number
Description:
Returns the number of seconds since 12:00 AM, Jan 1, 1970.

(try <expression>* catch <expression>*)

Package:
(built-in)
Arguments:
One or more expressions, followed by the atom cat ch, followed by zero or more expressions
Returns:
(Varies)
Description:

This command works something like Javat r y with afew simplifications. The biggest difference isthat the cat ch
clause can specify neither atype of exception nor a variable to receive the exception object. All exceptions occurring
inat ry block are routed to the single required cat ch block. The variable ?ERROR is made to point to the
exception object as an EXTERNAL _ADDRESS. For example:

(try
(open NoSuchFile.txt r)

catch
(printout t (call ?ERROR toString) crlf))

prints

Ret e Exception in routine _open::call.
Message: |/ O Exception java.io. Fil eNot FoundException: NoSuchFile.txt.

An empty cat ch block isfine. It just signifiesignoring possible errors.

(undefrul e <rul e- nane>)

file:///D|/README.html (44 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell
Package:
(built-in)
Arguments:
An atom representing the name of arule
Returns:
Boolean
Description:

Deletes a defrule. Removes the named rule from the Rete network and returns TRUE if the rule existed.. This rule will
never fire again.

(union$ <multifield-expression> <nultifield-expression>)

Package:
jess.Multi Functions
Arguments:
Two multifields
Returns:
Multifield
Description:

Returns a new multifield consisting of the union of its two multifield arguments (i.e., of all the elements that appear
in the two arguments with duplicates removed).

(unwat ch <watch-itenp)

Package:
(built-in)
Arguments:
Oneof theatomsal | ,rul es,conpi | ati ons,activations,facts
Returns:
TRUE
Description:
Causes trace output to not be printed for the given indicator. Seewat ch.

(upcase <I| exene-expressi on>)

Package:
j ess. StringFunctions
Arguments:
A string or atom
Returns:
A string
Description:
Converts lowercase characters in a string or symbol to uppercase. Returns the argument as an all-uppercase string.

(view)
Package:
j ess. vi ew. Vi ewFuncti ons

file:///D|/README.html (45 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

Arguments:
None

Returns:
TRUE

Description:

This Userfunction isincluded in the Jess distribution but is not normally installed. It requires Java 1.1. Y ou must load
itusing | oad- package (theclassnameisj ess. vi ew. Vi ewunct i ons). When invoked, it displaysalive
snapshot of the Rete network in a graphical window. See How Jess Works.

(watch (all | rules | conpilations | activations | facts))
Package:

(built-in)
Arguments:

Oneof theatomsal | ,rul es,conpi | ati ons,activations,facts
Returns:

TRUE
Description:

Produces additional debug output when specific events happen in Jess, depending on the argument. Any number of
different watches can be active simultaneously:

o rul es: prints amessage when any rulefires.
o conpi | ati ons: prints amessage when any rule is compiled.

o activati ons: prints amessage when any rule is activated, or deactivated, showing which facts have caused
the event.

o facts: print amessage whenever afact is asserted or retracted.
o al | :al of the above.

(whi | e <expression> [do] <action>*)

Package:
(built-in)
Arguments:
A Boolean value or afunction call returning Boolean, the atom do, and zero or more expressions
Returns:
(Varies)
Description:

Allows conditional looping. Evaluates the boolean expression repeatedly. Aslong asit does not equal FALSE, the list
of other expressions are evaluated. The value of the last expression evaluated is the return value.

4 Writing Jess Code

Many useful expert systems can be written using only the Jess language as presented above. | won't present atutorial on
writing such systems here (maybe someday!), but | do want to share afew useful hints and ideas.

4.1 Using an External Editor

Jess allows you to enter rules directly at its interactive prompt. While thisis fine for experimenting, Jess doesn't yet have
the ability to remember the source text for all the rules and constructs you enter. Therefore, you will typically enter your

file:///D|/README.html (46 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

rules and other data into a separate script file and read it into Jess using the bat ch command. Jess does offer the
ppdefrul e and save-f act s commands, both of which can be very helpful in interactively building up a system
definition and them storing it in afile. And as described in a previous section, you can use the syst emcommand to start
the external editor form within Jess, if desired.

4.2 Efficiency

The single biggest determinant of Jess performance is the number of partial matches generated by your rules. Y ou should
alwaystry to obey the following (sometimes contradictory) guidelines while writing your rules:

« Put the most specific patterns (those that will match the fewest facts) near the top of each rule's LHS.

« Put the most transient patterns (those that will match facts that are frequently retracted and asserted) near the bottom
of aLHS.

Y ou can use the vi_ ew command to find out how many partial matches your rules generate. See How Jess Works.

4.3 Error Reporting and Debugging

I've tried hard to improve Jess's syntax error reporting in this release, but it is still not as detailed as it could be. When you
get an error from Jess (during parsing or at runtime) it is generally delivered as a Java exception. The exception will contain
an explanation of the problem and the stack trace of the exception will help you understand what went wrong. For this
reason, it is very important that, if you're embedding Jess in a Java application, you don't write code like this:

try
{

Ret e engi ne;

éﬁ:c;i ne. execut eCommand(" (gi bberish!)");

}

catch (ReteException re) { /* ignore errors */ }

If you ignore the Java exceptions, you will miss Jess's explanations of what's wrong with your code. Don't laugh - more
people code this way than you'd think!

Anyway, if you attempt to load the folowing rule in the standard Jess command-line executable,

Jess> (defrule foo-1
(foo bar)
->
(printout "Found Foo Bar" crlf))

You'll get the following printout:

Ret e Exception in routine Jesp::parseDefrule.
Message: Expected '=>'" at line 2. (defrule foo-1 (foo bar) -> .

at jess. Jesp. parseError (Conpil ed Code)
at jess. Jesp. doPar seDefrul e(Conpi | ed Code)
at jess. Jesp. parseDefrul e(Conpil ed Code)
at jess. Jesp. parseSexp(Conpil ed Code)
at jess. Jesp. parse(Conpi |l ed Code)
at jess. Main. mai n(Conpi |l ed Code)

Looking at the routine names listed in the stack trace make it fairly clear that adef r ul e was being parsed, and the detail
message explains that the position of the . was reached in the input without finding the expected => symbol (we
accidentally typed - > instead).

Runtime errors can be more puzzling, but the stack trace will give you alot of information. Here's arule where we

file:///D|/README.html (47 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

erroneoudly try to add the number 3. O to theword f our :

Jess> (defrule foo-2
=>
(printout t (+ 3.0 four) crlf))
Whenwe (reset) and (run) well see:

Rete Exception in routine Value::intValue while executing defrule foo-2.
Message: Not a nunber: four type = 1 at line 8 (run)

at jess. Val ue.typeError(Conpil ed Code)

at jess. Val ue. nuneri cVal ue(Conpi | ed Code)

at jess.Plus.call (Conpiled Code)

at jess. Funcall. sinpl eExecut e(Conpi | ed Code)

at jess. Funcal |l . execut e(Conpi | ed Code)

at jess. Funcal |l . execut e(Conpi | ed Code)

at jess. Funcal |l . execut e(Conpi | ed Code)

at jess.Defrule.fire(Conpil ed Code)

at jess.Activation.fire(Conpiled Code)

at jess.Rete.run(Conpil ed Code)

at jess.Rete.run(Conpil ed Code)

at jess.HaltEtc.call (Conpil ed Code)

at jess. Funcall. sinpl eExecut e(Conpi | ed Code)

at jess. Funcal |l . execut e(Conpi | ed Code)

at jess. Funcal |l . execut e(Conpi | ed Code)

at j ess. Jesp. par seAndExecut eFuncal | (Conpi | ed Code)

at jess. Jesp. parseSexp(Conpi |l ed Code)

at jess. Jesp. parse(Conpil ed Code)

at jess. Mai n. mai n(Conpi | ed Code)
In this case, the error message is pretty clear except for the claim that the offending statement isr un. To find out what was
really happening, we have to look at the stack trace. Starting from the top down, we find Val ue. nuneri cVal ue() was
caledby Pl us. cal | () . A fewlevelsdown, weseeDefrul e. fire(). Taken together, this means that an addition
operation on the RHS of therule f oo- 2 (from thefirst line of the trace) found the symbol f our asone of its operands
when it expected a number.

Thenotationt ype = 1 intheerror message, by the way, refersto a set of constantsin the classj ess. RU. The values of
these constants are presented in section 5.4.1, The class jess.Value. Consulting that table, we see that type 1 isRU. ATOM a

symbol, which isindeed not a number.

If we make a similar mistake on the LHS of arule;

Jess> (defrule foo-3
(test (eq 3 (+ 2 one)))
=>
)

We seethe following after ar eset :

Rete Exception in routine Value::intValue while executing 'test' CE
[NodeTest ntests=1 [Test1l: test=EQ slot _idx=3;sub_idx=-1;
sl ot _value=eq 3 + 2 one] ;usecount = 1].
Message: Not a nunber: one type = 1 at line 11. (reset)

at jess. Val ue.typeError(Conpil ed Code)

at j ess. Val ue. nuneri cVval ue(Conpi | ed Code)

at jess.Plus.call (Conpiled Code)

at jess. Funcal |l . sinpl eExecut e(Conpi | ed Code)

file:///D|/README.html (48 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

at jess. Funcal |l . execut e(Conpi |l ed Code)

at jess. Funcal | . execut e(Conpi | ed Code)

at jess. Funcal | . execut e(Conpi | ed Code)

at | ess. NodeTest.runTest s(Conpi |l ed Code)

at | ess. NodeTest. cal | Node(Conpi | ed Code)

at | ess. Node. passAl ong(Conpi | ed Code)

at jess. NodelTELN. cal | Node(Conpi | ed Code)
at j ess. Node. passAl ong(Conpi | ed Code)

at jess. NodelTECT. cal | Node(Conpi | ed Code)
at jess. Rete. processTokenOneNode(Conpi | ed Code)
at jess. Rete. updat eNodes(Conpi | ed Code)

at jess. Ret eConpil er. addRul e(Conpi | ed Code)
at j ess. Rete. addDefrul e(Conpi | ed Code)

at jess. Jesp. doPar seDefrul e(Conpi | ed Code)
at | ess. Jesp. parseDefrul e(Conpi | ed Code)

at jess. Jesp. parseSexp(Conpil ed Code)

at jess. Jesp. parse(Conpil ed Code)

at jess. Main. main(Conpiled Code)

Again, the error message is somewhat but not completely helpful (it saysthe error was in the functionr eset , but it al'so
saysthat a (test) CE was being executed, and it prints out a stylized version of the test CE itself) and the stack trace contains
additional information. Here we see our old friends Val ue. nuneri cVal ue() and Pl us. cal | () being called, but we
don't see the Defrule being fired. Instead we see lots of oddly named classes and functions with names containing Node and
Token. Thisis aways atip-off that the error happened on Defrule LHS processing, as are both the fact that the error
happened during a reset and the message at the top of the trace. Way down the stack we see Ret e. assert () being called
by Ret e. r eset (), which also indicates that LHS processing was in progress when the exception happened.

The funny string starting with[NodeTest ntests=1; ... isJesssinterna representation for asingle nodein the
Rete network that encodesthet est CE from the rule above. Looking at it, you can see that it includes the function call (+
2 one) , which should help you track it down. Note that in this case, Jess can't tell you which rule this node belongs to, as
it theoretically could be shared by several rules (see How Jess Works for details.)

5 Embedding Jess in a Java Program

There are three different ways to use Jess and Java code together:
« You can embed Jessin your own Java applications. Thisis covered in this Section of the manual.

« You can write Java classes which you can add to Jess so that they will appear as a part of the Jess language. Thisis
discussed in Extending Jess With Commands Written in Java.

« You can manipulate Java objects directly from the Jess language using the optional j ess. r ef | ect package (the
functionsnew, cal | , set, get, set - menber, get - nenber, def cl ass, anddef i nst ance). Thisis
covered in Accessing Java Objects Directly From Jess.

5.1 Thej ess. Ret e Class
5.1.1 Executing a File of Jess Code

Using Jess from Javacodeissimple. Thej ess. Ret e class contains the expert system engine. Thej ess. Jesp class
contains the Jess parser. To execute afile of CLIPS code in Jess (like the Jess bat ch command), simply create aRet e
object and aJesp object, tell the Jesp object about thefile, and call Jesp. par se(bool ean pronpt):

i mport jess.*;

11

file:///D|/README.html (49 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

/1 See info about the ReteD splay classes bel ow
Nul | Di splay nd = new Nul | Di spl ay();

/Il Create a Jess engine
Rete rete = new Rete(nd);

/1 Open the file test.clp
FilelnputStreamfis = new FilelnputStream("test.clp");

/Il Create a parser for the file, telling it where to take input
/1 fromand which engine to send the results to
Jesp j = new Jesp(fis, rete);
do
{
try
{

/| parse and execute one construct, wi thout printing a pronpt
j . parse(false);

}

catch (ReteException re)

{
/'l Al Jess errors are reported as ' ReteException's.
re.printStackTrace(nd.stderr());

}
} while (fis.available() > 0);

Notethat if thefilet est . cl p containsthe CLIPSr eset and r un commands, the Jess engine will run to completion
during the par se() calls. Also note that Jesswill throw j ess. Ret eExcept i on exceptionsto signal errors.

5.1.2 Adding Optional Commands

The code above will create only a minimal Jess engine, including arelatively small number of functions (the intrinsic
functions). Many of the functions packaged with Jess are actually implemented as optional j ess. User package classes.
Y ou can choose to load some or all of these into your Jess applications. Omitting unneeded functions may be especially
important in applets, where asmall footprint isimportant.

Here is a snippet of code (fromj ess/ Mai n. j ava) which will load all the standard optional functions, without causing
an error if any of them are missing:

/1 Load in optional packages, but don't fail if any are m ssing.
Rete rete = new Rete(nd);

String [] packages = { "jess.StringFunctions”,
"j ess. PredFuncti ons",
"jess.Milti Functions",
"jess. M scFunctions",
"] ess. Mat hFuncti ons",
"] ess. BagFuncti ons",
"jJess.refl ect. Refl ect Functi ons",
"] ess.view ViewFunctions" };

for(int i=0; i< packages.length; i++)

{
try

file:///D|/README.html (50 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

{
ret e. addUser package((User package)

Cl ass. f or Nanme(packages[i]).new nstance());
}

catch (Throwable t) { /* Optional package not present */ }
}
To find out which functions are built into Jess and which are optional, see the Jess Function Guide, which lists the package
in which each function appears.

5.1.3 Executing Individual Commands

For somewhat more control over Jess from your Java program, you can use the Ret e class's
execut eCommand(St ri ng cnd) method. For example, after the above code, you could include the following:

try
{

rete. execut eCommand("(reset)");
ret e. execut eCommand(" (assert (foo bar foo))");
rete. execut eCommand(" (run)");

/[l Prints '42'
Systemout.println(rete.executeCommand("(+ 37 5)"));
}

catch (Ret eException ex)

{

Systemerr.println("Foo bar error.");
}

Commands executed viaexecut eCommand() may refer to Jess variables; they will be interpreted in the global context.
In general, only defglobals can be used in thisway.

5.1.4 Other Methods in the Ret e Class

Ret e has anumber of other public methods which | have not documented here; see the source for details. There are
functions to assert and retract facts (which you are invited to use) and functions to find and remove various constructs
(which you may also use.) There are also functions which allow you to add constructs (defrules, deftemplates, etc.) In
generdl, it isbest that you not use these in your programs, because they are highly subject to change in future Jess versions,
as are the details of the classes likej ess. Def r ul e which represent constructs. Two other functions you will certainly
useareaddUser functi on() andaddUser package() . These are explained in Extending Jess With Commands

Written in Java. In addition, the methodsr un() ,reset (),and hal t () areuseful.

Thereisaset of diagnostic methods in Rete which return Enumerations of various data structures in the engine:
« public synchronized Enumeration listDeftemplates()
« public synchronized Enumeration listDefrules()

public synchronized Enumeration listFacts()

public synchronized Enumeration listActivations()

« public synchronized Enumeration listDefglobal ()

« public synchronized Enumeration listUserfunctions()

Feel free to use these for debugging purposes, but don't get too chummy with them: they are subject to change without
notice, especially the types of the objects they return. Notethat | i st User f uncti ons() returnsan Enumeration of all
the Jess functions in the engine, including deffunctions and intrinsics.

5.2 The Ret eDi spl ay Interface.

file:///D|/README.html (51 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

Thereisalot you can do with just what we've discussed so far. One thing that you might not like, though, is that by default,
programs we write using the above techniques will send their output to your Java program's Syst em out and take input
from Syst em i n. If you're writing agraphical program, thisis clearly not what you want. Jess provides an interface

j ess. Ret eDi spl ay that letsyou deal with thisinasimple way. Ret eDi spl ay also provides some hooksinto the
engine'sinternal workings. The Ret eDi spl ay interface provides two types of functions:

1. Functionsthat return the intial input, output, and error streams that the engine should use.

2. Functions that are called by the engine whenever an event occurs (events here meaning that a construct is parsed, fact
is asserted, ruleis activated, and so forth).

5.2.1 Using ReteDisplay

Every Ret e object must be constructed with an instance of Ret eDi spl ay. Hereisthe definition of the Ret eDi spl ay
interface:

public interface ReteDi splay
{
/Il Rete sets its initial input/output using these
/'l These must be inpl enented
public java.io.PrintStream stdout();
public java.io.|lnputStream stdin();
public java.io.PrintStream stderr();

/'l These notify the ReteD splay object when things happen
/1 Can do nothing if you want!

public void assertFact (Val ueVector fact);
public void retractFact (Val ueVector fact);
public void addDeffacts(Deffacts df);
public void addDeftenpl ate(Deftenpl ate dt);
public void addDefrul e(Defrule rule);
public void activateRul e(Defrule rule);
public void deactivateRul e(Defrule rule);
public void fireRul e(Defrule rule);

/'l This gives the Rete object access to Appl et resources
/1 Should return null if not in an Appl et

public java. appl et. Appl et applet();
}

Jess ships with two different classes that implement this interface. Y ou can write your own or modify these for usein your
own applications.

o Theclassj ess. Nul | Di spl ay, which implements part of the Jess command-line interface, uses the notification
functions as a means of notifying Java Observers of changes to the Rete network (Nul | Di spl ay extends
java. util . Qobservabl e). Thisisan important part of the implementation of the vi ewcommand, which can
display the Rete network architecture interactively as rules are added, which can be a valuable debugging tool.
j ess. Nul | Di spl ay ssimply routes Java's standard output and standard input to the Rete engine. It is convenient to
use for many applications because it has no GUI. We used it above in our simple examples, and the standard Jess
command line driver j ess. Mai n usesit aswell.

« Theclassj ess. Consol eDi spl ay ismore complex. It does everythingj ess. Nul | Di spl ay does, and more.
Itisagraphical display, routing Jess input and output into graphical text boxes. It uses the notification functionsto
support the vi ewcommand just as NullDisplay does. Thej ess. Consol e andj ess. Consol eAppl et classes
are examples of programsthat usej ess. Consol eDi spl ay. See Jess43/examples/console.html for an example
Web page embedding j ess. Consol eAppl et . These classes should give you agood idea of how to use
Ret eDi spl ay to embed Jessin a GUI application.

5.2.2 The j ess. Text Ar eaQut put St r eamand j ess. Text | nput St r eamClasses

file:///D|/README.html (52 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

Jess ships with two utility classes that are very useful when building GUIs for Jess: the
j ess. Text AreaQut put St reamandj ess. Text | nput St r eamclasses. Both can serve as adapters between Jess
and graphical input/output widgets. The TextAreaOutputStream class is, as the name implies, a Java OutputStream that
sends any datawrittentoittoaj ava. awt . Text Ar ea. Thisletsyou place Jess's output in a scrolling window on your
GUI. Thej ess. Consol e andj ess. Consol eAppl et jess GUIs use these classes. To use
Text Ar eaCQut put St r eam simply write a class that implements Ret eDi spl ay, returning a suitably wrapped
Text Ar eaCQut put St r eamfrom thest dout () and st derr () methods:
i nport jess.*,
public class MyDisplay inplenents ReteD spl ay
{

public TextArea ta = new Text Area(20, 80);

Text AreaQut put Tream t aos = new Text AreaCQut put Streanm(ta) ;

PrintStream ps = new PrintStrean(taos, true);

public MyDi splay()
{
Frame f = new Frane("Jess Deno");
f.add(ta);
f.pack();
f.show();
}

PrintStream stdout() { return ps; }

/I ... (Plus all the other ReteDisplay methods) Now if you construct aj ess. Ret e object with an instance of this display,
the Jess output will go into a scrolling window. Study j ess/ Consol eDi spl ay. j ava andj ess/ Consol e. j avato
see a compl ete example of this.

j ess. Text | nput St r eamissimilar, butitisan| nput St r eaminstead. It isactualy quite similar to

java.io. StringBufferlnput Stream except that you can continually add new text to the end of the stream (using
theappendText () method). It isintended that you createaj ess. Text | nput St r eam return it from your

j ess. Ret eDi spl ay. st di n() method, and then (in an AWT event handler, somewhere) append new input to the
stream whenever it becomes available. See the samej ess/ Consol e* filesfor acomplete usage example for this class as
well.

5.2.3 Switching Streams in Mid-Stream

The Rete engine will call thest dout () and st di n() methods of your Ret eDi spl ay classat least oncewhenitis
created. It isfrom these return values that the initial definition of thet , WSTDOUT, and WSTDERR I/O routers are made (see
Manipulating Jess I/O Routersin Java). It will never call these methods again. This means that changing the return values of

these functions over time may have no effect. To re-route input and output you must use the explicit router functions.

5.3 Manipulating Jess I/0O Routers in Java

Ret eDi spl ay letsyou set up the minumal initial state for a Ret e object, but Jess can read from more that just standard
input and standard output. Jess I/O routers can be easily manipulated from Java. These six functions in the Rete class
manipulate the router list:

e public void addl nputRouter(String s, InputStreamis, bool ean consol e)

e public void addQutput Router(String s, QutputStream os)
e public void renovel nput Router(String s)

e public void renpveQut put Router(String s)

e public InputStream getlnputRouter(String s)

e public CQutputStream get Qut put Router(String s)

file:///D|/README.html (53 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

When Jess starts up, there are one input router and three output routers defined: thet router, which reads and writes from
the standard input and output; the WSTDOUT router, which Jess uses for all prompts, diagnostic outputs, and other displays;
and the WSTDERR router, which Jess uses to print stack traces and error messages. Y ou can reroute these inputs and outputs
simply by changing the Input and Output streams they are attached to using the above functions. Y ou can use any kind of
streams you can dream up: network streams, file streams, etc.

Thebool ean argument consol e totheaddl nput Rout er method specifies whether the stream should be treated like
the standard input or like afile. The differenceisthat on console-like streams, ar ead call consumes an entire line of input,
but only the first token is returned; while on file-like streams, only the characters that make up each token are consumed on
any one call. That means, for instance, that ar ead followed by ar eadl i ne will consume two lines of text from a
console-like stream, but only one from afile-like stream, given that the first line is of non-zero length. This odd behaviour
isactually just following the behaviour of CLIPS.

The Ret e class has two more handy router-related methods: out St r ean() anderr St r ean() , both of which return a
Pri nt St r eamobject. out St r ean() returns a stream that goes to the same place as the current setting of W5TDOUT;
errStream() doesthe samefor WSTDERR.

Y ou can add your own routers which do /O through any Java streams; they will immediately be usable from Jess. Look at
the implementation of the socket Userfunctioninj ess/ M scFuncti ons. j ava for anideaof what's possible.

5.4 Calling Jess Functions and Getting Results Back

So far we have treated the Ret e class more or less as a black box. We have only poked and prodded it from the outside
without exchanging any real data, only strings of text. To achieve atight integration between Jess and your application,
you'll need to be able to go further. Most likely, you'll want to execute commands in the Jess language that accept
arguments that cannot be easily or correctly represented in the String argument to execut eComrand() . For example, a
floating-point number or a Java object or amultifield value or afact. It's actually quite easy to call any Jess function, passin
any data as arguments, and receive the result not as a string but as arbitrary data. To do this, you're going to have to learn
about two more Jess classes: j ess. Val ue andj ess. Val ueVect or.

5.4.1 The class j ess. Val ue

A Val ue isaself-describing data object. Every datum in Jessis contained in one. Once it is constructed, a Val ue'stype
and contents cannot be changed. Val uesupportsat ype() function, which returns one of these type constants (defined in
theclassj ess. RU, (RU ="Rete Utilities")):

final public static int NONE = 0; ; an enpty value (not NL)
final public static int ATOM = 1; ; a synbol

final public static int STRI NG = 2; ; astring

final public static int | NTEGER = 4; ; an integer

final public static int VAR ABLE = 8; ; a variable

final public static int FACT_ID = 16; ; a fact index

final public static int FLOAT = 32; ; a double float
final public static int FUNCALL = 64; ; a function cal
final public static int ORDERED _FACT = 128; ; an ordered fact
final public static int UNORDERED FACT = 256; ; a deftenplate fact
final public static int LIST = 512; ; a multifield

final public static int DESCRI PTOR = 1024; ; (internal use)
final public static int EXTERNAL _ADDRESS = 2048; ; a Java object
final public static int | NTARRAY = 4096; ; (internal use)
final public static int MJULTI VAR ABLE = 8192; ; a nultivariable
final public static int SLOT = 16384; ; (internal use)
final public static int MJLTI SLOT = 32768; ; (internal use)

Val ue objects are constructed by specifying the data and the type. Each overloaded constructor assures that the given data
and the given type are compatible. Note that for each constructor, more than one value of thet ype parameter is acceptable.

file:///D|/README.html (54 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

The available constructors are:
public Value(Object o, int type) throws ReteException

public Value(String s, int type) throws ReteException

publ i ¢ Val ue(Val ue v)

publ i ¢ Val ue(Val ueVector f, int type) throws ReteException
publ i c Val ue(double d, int type) throws ReteException
public Value(int value, int type) throws ReteException

public Value(int[] a, int type) throws ReteException
Val ue supports a number of functions to get the actual data out of aVal ueobject. These are

publ i c Cbj ect external AddressVal ue() throws ReteException
public String stringValue() throws ReteException
publ i ¢ Val ueVector factValue() throws ReteException
publ i c Val ueVector funcall Val ue() throws ReteException
publ i c Val ueVector |istValue() throws ReteException
publ i c doubl e floatValue() throws ReteException

publ i c doubl e nunericVal ue() throws ReteException
public int descriptorValue() throws ReteException
public int factlDvVal ue() throws ReteException

public int intValue() throws ReteException

public int[] intArrayValue() throws ReteException

If you try to convert random values by creating a Value and retrieving it as some other type, you'll generally get a
ReteException. However, some types can be freely interconverted: for example, integers and floats.

5.4.2 The class j ess. Val ueVect or

Facts, function calls, lists, etc. are stored by Jessin objects of classj ess. Val ueVect or. Val ueVect or isan
extensible array of Val ue objects. You set an element of aVal ueVect or withvoi d set (Val ue, int) andgetan
element with Val ue get (int). set() andget () will throw an exception if the index you're accessing is past the
end of the current array. Y ou can add avalue to the end of aVal ueVect or withvoi d add(Val ue) (which can extend
the length of the internal data structures). i nt si ze() returnsthe actual number of Val uesinthe Val ueVect or.

voi d set Lengt h(i nt) letsyou cheat by extending the length of aVal ueVect or toinclude null Val ues. (Thisis
necessary sometimesto allow filling in many elements in random order.)

Facts (type RU. ORDERED_FACT or RU. UNORDERED FACT) are stored as aValueVector with the dotsfilled in a special
way, as follows (the constants representing slot numbers must be used, as they may change):

’SLOT NUMBER ’TYPE ’DESCRI PTION

’RU.CLASS ’RU.ATOM]The head or first field of the fact

’RU.ID ’RU.FACT_ID ’Thefact-id of thisfact

’RU.DESC ’RU.DESCRI PTOR’One of RU. ORDERED FACT or RU. UNORDERED FACT
’RU.FI RST _SLOT ’(ANY)]Value of thefirst ot of this fact

[RUFIRST_SLOT + 1[(ANY) [second

Note that for ordered facts, the slots are stored in the order in which they appear, but in unordered (deftemplate) facts, they
appear in the order given in the corresponding deftemplate.

Function calls (RU.FUNCALLSs) are simpler; the first slot is the functor as an RU. ATOM and all remaining slots are
arguments. And multifields are even simpler: each element of the Val ueVect or isan element of the multifield.

5.4.3 Creating and Executing RU.FUNCALL Objects

Given the above, it is very easy to create and execute objects that represent Jess function callsin Java. This allows you to

file:///D|/README.html (55 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

pass arbitrary arguments, and to receive the return value. The steps to follow are:

1. Createaj ess. Funcal | object (asubclassof Val ueVect or)

2. Append the desired arguments as Val ue objects

3. Cdll Funcal | . si npl eExecut e() to execute the command.

4. Thereturn valueisaVal ue object containing the result.
For example, here we are calling the Jess bi nd function, to make the defglobal named * x* point to a Java object of the
imaginary type Foo.

Rete engine = .. .;

Foo foo = new Foo();

/1 Define the defgl obal
engi ne. execut eCommand(" (def gl obal ?*x* = 0)");

/1 Tell Jess not to reset defgl obals when the reset command is issued
Il Gherwise ?*x* will be reset to 0 and the Foo object will disappear
engi ne. execut eCommand(" (set-reset-globals FALSE)");

/| Create the Funcall object
Funcall f = new Funcall ("bind", engine);

/1 Now add the argunents, in left-to-right order. Each argunent
/1l is a jess.Value object. Note the use of the

/1 RU. EXTERNAL_ADDRESS type to pass in the Java object
f.add(new Val ue("*x*", RU. VAR ABLE));

f.add(new Val ue(foo, RU. EXTERNAL_ADDRESS));

/'l Now execute the function (sinpleExecute is a static function.)
f.sinpl eExecut e(f, engine. gl obal Context());

/1 Now Jess code has access to the Java object!
engi ne. execut eCommand(" (printout t ?*x* crlf)");

There are afew restrictions on what you can do with this technique:
« You can't passin nested function calls. Each Funcal | must represent a single function to execute.

« Variable names can only be passed to the "bind" function; if you need to use variable names, use
execut eConmmand() instead (it returns the result of executing the function, asaj ess. Val ue.)

5.4.4 Using st or e and f et ch to transfer Java objects

Jess 4.1 introduced a new set of functions to let you easily send Java objects between Jess and Java code. Basically, each
Ret e object now contains a special Hashtabl e that both Jess code and Java code can store objectsinto. If you st or e
something from Java code, you can subsequently f et ch it from Jess, and vice-versa, providing a very easy-to-use
mechanism for communicating inputs and results between the two languages.

These methods are available in the class Ret e:

public Value store(String nane, Value val);
public Value store(String nane, Cbject val);
public Value fetch(String nane);

while these methods are available in Jess:

(store <name> <val ue>)

file:///D|/README.html (56 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell
(fetch <nanme>)

Both st or e methods accept a”name" and avalue (in Java, either in theform of aj ess. Val ue object (see section 5.4.1
for details) or an ordinary Java object; in Jess, any value), returning any old value with that name, or null (or nil) if thereis
none. Both f et ch methods accept a name, and return any value stored under that name, or null/nil if there is no such
object. st or e and f et ch are now the preferred way to send Java objects between Jess and Java. A complete example,
with amain program in Java and a set of rules that return aresult, isin the directory Jess43/jess/examples/xfer/ .

5.5 Using Jess in a Multithreaded Program

Jess is getting closer to being entirely thread-safe, aslong as you use it in areasonable fashion. One mgjor difference
between Jess and CLIPS isthat you can call r un from arule RHS and have anew rule fired up in the middle of RHS
execution! Thiswould almost certainly cause problems, so you probably shouldn't do it.

Jess maintains separate mutexes for RHS execution and for LHS execution; in other words, only one assert or retract may
be going on in asingle engine at once, and only one rule RHS may be executing at once; however, these two activities may
occur simultaneously.

If you use Java object matching on rule LHSs, be aware of interactions between multiple threads. It is certainly possible to
come up with combinations of objects and rule engines that will deadlock; the easiest way to do thisisto trigger a
Pr oper t yChangeEvent fromarule LHS, so be careful not to do that!

L ess obvious but more pernicious s the fact that calling functions on rule LHSs which can directly or indirectly have the
side-effect of asserting, retracting, or modifying afact (this includes definstance and undefinstance, and modifying the
properties of a definstanced Bean) can cause Jess to operate incorrectly. Again, be careful not to do this!

6 Extending Jess With Commands Written in Java

Jess's rule language can be extended with additional commands written in Java. For many real applications, extending Jess
in thisway may be necessary. The good news isthat it's very easy, and you can add capabilities to Jess limited only by your
Imagination.

6.1 Extension Objects

The Javainterfacej ess. User f unct i on represents a single user-supplied function, while the interface

j ess. User package represents awhole set of such functions. When you write a new function for Jess, you do it by
writing a class that implementsthej ess. User f unct i on interface (see below for details on how thisisdone.) Then a
single instance of this classis created and installed into Jess. These objects can maintain state and can be retrieved by other
code you write (see Obtaining References to Userfunction Objects). Therefore a Userfunction can cache results across

invocations, maintain complex data structures, or keep references to external Java objects for callbacks.

6.2 Installing Extensions

Given that you have written or obtained some classes which implement these interfaces, you can load these extensions into
Jessin two ways. First, you can load them in from Java code. Given that r et e isthe Rete object in your application, and
MyFunct i on isthe name of a Userfunction class you (or someone else!) wrote, you can add the new function to Jess by
caling

rete. addUser functi on(new MyFunction());

or an entire package of such functionsin aclass nypackage using
ret e. addUser package(new MyPackage());

Y ou can also load extension functions and packages from the Jess language itself. The equivalents to the above are
(l oad-function "M/Function")

and

file:///D|/README.html (57 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell
(1 oad- package "MWPackage")

Note that if the new classes or user packages come in a Java package, you'll need to specify the fully qualified name of the
class:

(1 oad- package "xyzzy. bassomati c. MyPackage")
In any case, the relevant classes need to be reachable on your Java CLASSPATH.

6.3 Writing Extensions

I've made it as easy as possible to add user-defined functions to Jess. There is no system type-checking on arguments, so
you don't need to tell the system about your arguments, and values are self-describing, so you don't need to tell the system
what type you return. Y ou do, however, need to understand several Jessclasses. j ess. Val ue,j ess. Val ueVect or,
and | ess. Funcal | , asprevioudy discussed in Embedding Jess in a Java Program.

Toimplement thej ess. User f unct i on interface, you need to implement only two methods: nane() andcal | ().
Here's an example of aclass called 'MyUpcase' that implements the Jess function ny - upcase, which expects a String as
an argument, and returns the string in uppercase.

| mport jess.*,

public class MyUpcase inplenents Userfunction

/1 The nane nethod returns the nane by which the function will appear in Jess
code.
public String name() { return "ny-upcase"; }

public Value call (Val ueVector vv, Context context) throws ReteException

{
return new Val ue(vv.get(1.)stringVal ue(.)toUpperCase(), RU. STRI NG ;
}
}

Thecal | () method does the business of your Userfunction. When cal | () isinvoked, the first argument will be a
Val ueVect or representation of the Jess code that evoked your function. For example, if the following Jess function call
was made,

(nmy-upcase "foo")

thefirst argument to cal | () would beaVal ueVect or of length two. The first element would be aVal ue containing
the symbol (type RU.ATOM) ny- upcase, and the second argument would be aVVal ue containing the string
(RU.STRING) " f 00" .

Note that weusevv. get (1) . stri ngVal ue() to get thefirst argument to my- upcase asaJava String. If the
argument doesn't contain a string, or something convertible to astring, a Ret eExcept i on may be thrown that describes
the problem; hence you don't need to worry about incorrect argument typesif you don't want to. vv. get (0) will always
return the symbol ny- upcase, the name of the function being called (the clever programmer will note that thiswould let
you construct multiple objects of the same class, implementing different functions based on the name of the function passed
in as a constructor argument); vv. get (1) isthefirst argument, and vv. get (2) would be the second, if thisfunction
accepted multiple arguments. If you want, you can check how many arguments your function was called with and throw a
ReteException if it was the wrong number by using thevv. si ze() method. In any case, our simple implementation
extracts a single argument and uses the Javat oUpper Case() method to doitswork. cal | () must wrap itsreturn value
inaj ess. Val ue object, specifying the type (hereitisRU. STRI NG).

Having written this class, you can then, in your mainline code, simply call Ret e. addUser f uncti on() withan
instance of your new class as an argument, and the function will be available from Jess code. Adding to our mainline code
from the last section:

/1l Add the 'ny-upcase' command to Jess
rete. addUser functi on(new MyUpcase());
/'l Exceute sone Jess code that calls this function

file:///D|/README.html (58 of 73) [5/3/1999 2:51:06 PM]

Jess, the Java Expert System Shell

rete. execut eCommand(" (printout t (my-upcase foo) crlf)");
will print FOO,

6.4 Writing Extension Packages

Thej ess. User package interfaceis ahandy way to group acollection of User f unct i ons together, so that you don't
need to install them one by one (all of the extensions shipped with Jess are included in Userpackage classes). A

User package class should supply the one method add() , which addsacollection of User f unct i ons to aRete
engineusing addUser f uncti on() . Nothing mysterious going on, but it's very convenient. As an example, the string
utilities packagej ess/ St ri ngFunct i ons. j ava looks something like this:

public class StringFunctions inplenments Userpackage

{
public void add(Rete engine)

{

engi ne. addUser functi on(new strcat());
engi ne. addUser f uncti on(new upcase());
engi ne. addUser functi on(new | owcase());
engi ne. addUser functi on(new strconpare());
engi ne. addUser functi on(new strlength());
engi ne. addUser functi on(new substring());

}

Now in your mainline, you can call
engi ne. addUser package(new j ess. Stri ngFunctions());
and from your Jess code, you can call st r - cat, st r- conpar e, etc.

User packagesare agreat place to assemble a collection of interrelated functions which potentially can share data or
maintain references to other function objects. You can also use User packagesto make sure that your User f unct i ons
are constructed with the correct constructor arguments.

There are alot of small Userfunction classes in the jess package which you can use as examples for writing your own Jess
extensions. All of these small classes can add alot of size overhead to Applets, which iswhy they are not al built-in to the
engine. These days, with zips and JAR files, thisisn't such abig deal. Still, you can leave them out if you want just by not
adding the relevant Userpackage from your mainline program. Contrarily, if you don't add these packages to your programs,
the corresponding Jess functions will not be available.

6.5 Obtaining References to Userfunction Objects

Occasionally it is useful to be able to obtain areferenceto aninstalled User f unct i on object. The method
Userfunction Rete.findUserfunction(String nane) letsyoudo thiseasily. It returnsthe

User f unct i on object registered under the given name, or null if thereisnone. Thisis most useful when you write
Userfunctions which themselves maintain state of some kind, and you need accessto that state.

7 Accessing Java Objects Directly from Jess

As of Jess 4.0, you can create Java objects, call their methods, and access their data directly from Jess without writing any
Java code! The Jess functions that enable this arein the optional Userpackagej ess. ref |l ect. Ref | ect Functi ons
and they require Java 1.1 or later to compile. See the Jess Function Guide for adescription of thecal | , new, set , get ,

set - nenber and get - nenber methods.

This new capability makes Jess more than just an expert system shell; it is now also a dynamic, extensible, portable

file:///D/README.html (59 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell
Java-based scripting environment.

7.1 Creating Java Objects

The Jess new function lets you create Java objects. The first argument is the fully-qualified name of the class as a symbol or
String; any remaining arguments are passed to the Java object's constructor. For example:

(new java. |l ang. StringBuffer 100)
will create aninstance of St ri ngBuf f er, passing the integer 100 as a constructor argument.

In the case of overloaded constructors, the constructor will be chosen from among all constuctors for the named class with
the given number of arguments based on afirst-best fit algorithm. Built-in Jess types are converted as necessary to match
the available constructors. The Jess atoms TRUE and FAL SE are automatically converted to Java booleans, while the atom
ni | isautomatically converted to the Java null pointer. Jess multifields are automatically converted to one-dimensional
Java arrays, there is no way to represent amultidimensional Java array in Jess (if this becomes necessary, you can always
write a Userfunction to call the appropriate constructor). Floating point values are converted to the best-matching
floating-point type. External address types are unwrapped and passed directly as Java arguments. If you have trouble calling
the correct constructor, you can often disambiguate between multiple constructors by using Java wrapper objects. For
example, if the imaginary Foo class had the two constructors

Foo(doubl e d);
Foo(float f);

you could specifically call the one that takes afloat argument instead of the double argument like this: way:
(new Foo (new java.l ang. Fl oat 123. 456))

7.2 Calling Java Methods

TheJesscal | function letsyou call Java methods. Thefirst argument to cal | iseither avariable holding the Java object

on which to call the method, or the name of the class (for a static method.) The second argument is the name of the method.
The remaining arguments are the arguments to the method. Jess will find an appropriate method using the same techniques

described in Creating Java Objects.

Anexample: tousethevoi d java. |l ang. Stri ngBuffer. append(String s) method directly, you can write:

(def gl obal ?*str-buf* = (new java.l ang. StringBuffer 100))
(call ?*str-buf* append "Sone String Data To Append")

Note that in many cases, explicit use of thecal | functor isoptional; it can be omitted in function calls that are not nested
inside of other function calls. For example, the above call to append could also be written as:

(?*str-buf* append "Sone String Data To Append")
A static method example: you can invoke the Java garbage collector using thej ava. | ang. Syst em gc() method like
this:

(call java.lang. System gc)

7.3 Setting and Reading Java variables

Y ou can set and read the values of public Java member variables using the set - nenber and get - menber functions.
Each of these functions accepts either a Java object or a class name (in the case of static members) as the first argument.
The second argument is the name of thefield. set - menber requires athird argument, the new value for the field. Thereis
no mechanism for setting or getting a specific member of an array field; you can only set or read complete arrays, which are
represented in Jess as multifield values.

An example: if ?pt holdsaj ava. awt . Poi nt object, you can reference its x coordinate field like this:
(printout t "The value of x is " (get-nmenber ?pt X))

file:///D/README.html (60 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell
7.4 Setting and Reading Java Bean Properties

As mentioned previously, Java objects can be explicitly pattern-matched on the LHS of rules, but only to the extent that
they are Java Beans. A Java Bean isreally just a Java object that has a number of methods that obey a simple naming
convention for Java Bean properties. A class has a Bean property if, for some string X and type T it has either or both of:

« A method named get X which returns T and accepts no arguments; or, if T is boolean, named i s X which accepts no
arguments;

« A method named set X which returns void and accepts a single argument of type T.

Note that the capitalization is also important: for example, for amethod named isVisible, the property's name isvisible, with
alower-case V. Only the capitalization of thefirst letter of the name isimportant. Y ou can conveniently set and get these
properties using the Jessset and get methods. Note that many of the trivial changes in the Java 1.1 were directed towards
making most visible properties of objectsinto Bean properties.

An example: AWT components have many Bean properties. Oneis visible, the property of being visible on the screen. We
can query this property in two ways: either by explicitly caling thei sVi si bl e() method, or by querying the Bean
property.

(def gl obal ?*franme* (new java.aw.Franme "Frane Denp"))

; Directly call '"isVisible, or...
(printout t (call ?*franme* isVisible) crlf)

; equi val ently, query the Bean property
(printout t (get ?*franme visible) crlf)

7.5 Writing Java GUIs in Jess

One special case of manipulating Java objects directly from Jess is the building of Java GUIs from Jess code. | think this
will be pretty common, so I've provided some utilities for extending what is possible. All of these utility classes are in the
j ess. refl ect package.

It should now be obvious that you can easily construct GUI objects from Jess. For example, hereisaBut t on:

(def gl obal ?*b* = (new java.awt.Button "Hell o0"))

Wheat should not be obviousis how, from Jess, you can arrange to have something happen whan the button is pressed. For
this, | have provided afull set of Event Li st ener classes:

o jess.refl ect. ActionLi st ener

o jess.refl ect. Adj ust ment Li st ener
« jess.refl ect. Conmponent Li st ener
« jess.refl ect. ContainerListener
o jess.refl ect. FocusLi st ener

o jess.reflect.|tenlistener

« jess.refl ect. KeyLi st ener

o jess.refl ect. MouselLi stener

o jess.refl ect. MouseMoti onLi st ener
o jess.refl ect. TextLi st ener

o jess.refl ect. WndowLi st ener

Each of these classesimplements one of the Li st ener interfacesfromthej ava. awt . event packagein Javal.l. Each
implementation packages up any event notifications it receives and forwards them to aJessdef f unct i on, whichis
supplied as a constructor argument to the Li st ener object.

An example should clarify matters. Let's say that when the Hel | o button is pressed, you would like the string Hel | o,
Wor | d! to be printed to standard output (how original!). What you need to dois:

file:///D/README.html (61 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

1. Defineadef f unct i on which prints the message. Thedef f unct i on will be called with one argument: the event
object that would be passed to act i onPer f or med() . (If thisis gibberish to you, pick up abook on Java AWT
programming.)

2. Createaj ess.refl ect. Acti onLi st ener object, telling it about thisdef f unct i on, and aso which Jess
engineit belongs to.

3. Tell theBut t on about the Act i onLi st ener usingtheaddAct i onLi st ener method of
j ava. awmt . Butt on.

Here's a complete program in Jess:

(def gl obal ?*f* = (new java.awt.Frane "Button Denpn"))
(def gl obal ?*b* = (new java.awt.Button "Hello0"))

(deffunction say-hello (?evt)
(printout t "Hello, World!" crlf))

(?*b* addActi onLi st ener
(new jess.reflect. ActionLi stener say-hello (engine)))

(?*f* add ?*b*)

(?*f* pack)

(set ?*f* visible TRUE)
The Jessengi ne function returnsthe | ess. Ret e object in which it is executed, as an external address. Y ou'll have to
quit using *C. To fix this, you can add aW ndowLi st ener which handles W NDOW CLOSI NG events to the above
program:

(deffunction frame-handl er (?evt)

(if (= (?evt getlD) (get-nenber ?evt W NDOW CLOSING) then
(call (get ?evt source) dispose)

(exit)))

(?*f* addW ndowLi st ener
(new jess.refl ect. WndowLi st ener frane-handl er (engine)))

Now when you close the window Jess will exit. Notice how we can examine the ?evt parameter for event information.

See the demo exanpl es/ f rane. cl p for adlightly more complex example of how you can build an entire Java
graphical interface from within Jess.

7.6 Screen Painting and Graphics from Jess

Asyou may know, the most common method of drawing picturesin Javaisto subclassj ava. awt . Canvas, overriding
thevoi d pai nt (G aphi cs g) method to call the methods of thej ava. awmt . Gr pahi ¢s argument to do the
drawing. Well, Jess can't help you to subclass a Java class (at |east not yet!), but it does provide an adaptor class, much like
the event adaptors described above, that will help you draw pictures. The classisnamed j ess. ref | ect. Canvas.
When you construct an instance of this class from Jess, you pass in the name of a deffunction (which will do the painting)
and areference to the Rete engine. Whenever pai nt () iscaledtorender thej ess. ref |l ect. Canvas, the
jess.refl ect. Canvas inturnwill call the deffunction. The deffunction will be passed two arguments: the

j ess. refl ect. Canvas instanceitelf, and thej ava. awt . G- aphi cs argument to pai nt () . Inthisway, Jess code
can draw pictures using Java calls. An example looks like this:

;; A painting deffunction. This function draws a red ' X between the
;. four corners of the Canvas on a blue field.

(deffunction painter (?canvas ?graph)
(bind ?x (get-nenber (call ?canvas getSize) w dth))

file:///D/README.html (62 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

(bind ?y (get-nmenber (call ?canvas getSize) height))
(?graph set Col or (get-nenber java.awt.Col or blue))
(?graph fillRect 0 0 ?x ?y)

(?graph set Col or (get-nenber java.aw . Color red))
(?graph drawLine 0 0 ?x ?y)

(?graph drawLine ?x 0 0 ?y))

;; Create a canvas and install the paint routine.
(bind ?c (new jess.reflect.Canvas painter (engine)))

A simple but complete program built on this example isin thefile exanpl es/ dr aw. cl p inthe Jess distribution.
7.7 Pattern Matching Java Beans

Java Beans is a component architecture for Java, added in Java 1.1. One of the most exciting recent additions to Jessis the
ability to match Java Beans on rule LHSs as if they were facts. In fact, such objects become facts. When a Java object is
properly registered for pattern-matching with Jess, Jess creates and maintains a fact on the fact-list that always represents
the state of that object. It isthese shadow facts that are actually matched on rule LHSs. In the following sections, we will
learn how to tell Jessto create these shadow facts.

The processisfairly simple, and involves two steps. First, you tell Jessto build an internal deftemplate representing a
particular Javaclass. Y ou use the defclass construct to do this. Then you can tell Jess to shadow a specific object of that

class using the definstance command.

I will try to use aminimum of Java Beans jargon in what follows, but if you are unfamiliar with the Java Beans architecture,
you might want to grab a Java Beans book from your favorite computer bookstore before continuing.

7.7.1 The def cl ass construct

def cl ass isusedto tell Jessthat you would like to be able to use a specific Java class like a deftemplate. The syntax of
def cl ass issmple:

(defcl ass punp jess. exanpl es. punps. Punp)

The classtag punp isjust like a deftemplate name. Jess automatically builds a deftemplate from the named Java class, in
thiscase| ess. exanpl es. punps. Punp, an example class shipped with Jess. Jess turns Java Beans properties into
deftemplate slots. (If you're not familiar with Java Beans, this basically means that Jess will find any methods in the class
named get <X> or i s<X> which return non-void and take no arguments. Jess uses the Beanlnfo mechanism to learn about
Bean properties.) As an example, thej ess. exanpl es. punps. Punp classlooks something like this (lots cut out!):

public class Punp

{
public String getName() { ... }
public int getFlow() { ... }
public void setFlowint f) { ... }
}

Jess will generate this deftempl ate:

(deftenpl ate punp "$JAVA- OBJECTS$ j ess. exanpl es. punps. Punp”
(sl ot class)
(sl ot nane)
(slot flow
(sl ot OBJECT))

The extradot cl ass comesfromtheget Cl ass() method inherited fromj ava. | ang. Obj ect . The OBJECT dotis
added to every defclass by Jess: it always holds a reference to the Java object the matched pattern refersto. The name and
f | owdots are generated by Jess dueto the presence of the getName and getFlow methods. Jess uses the

j ava. beans. | nt r ospect or classto determine the properties of a Bean, which means it respects Beanlnfo objects, if

file:///D/README.html (63 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell
present.

Array properties give rise to multislots in Jess.

There's asimple Java Bean class to experiment with inj ess. exanpl es. si npl e.
7.7.2 The def i nst ance construct

def i nst ance tells Jessto create shadow facts for a particular Java object. Onceadef i nst ance construct has been
issued, there will always be afact on the fact-list representing that object (until thecl ear command isissued.) Ther eset
command refreshes, but does not remove, these facts.

The syntax of def i nst ance issimple, too:

(definstance <defcl ass-nane> <ext ernal - addr ess>)
def i nst ance simply pairs Java objects (the <external-address> argument) with def cl ass names.

An object to be treated in this way must satisfy two requirements:
1. It must be assignable to areference of the type defined in apreviousdef cl ass. In other words, it must be of the
same class, a subclass, or an implementor of a defclassed interface.

2. It must support Pr oper t yChangelLi st ener s (an event mechanism used by Java Beans). In other words, it must
support theaddPr oper t yChangelLi st ener (Propert yChangeli st ener pcl) method. Note that none
of the classesin the Java API support Pr oper t yChangeLi st ener s, however, many Java Beans do, and support
is easily added to other classesusing thej ava. beans. Pr opert yChangeSupport class.

In any case, you can install an object for pattern matching like this:
(definstance punp (new jess. exanpl es. punps. Punp "MAI N' ?tank))

where the first argument to def i nst ance isadef cl ass tag, and the second is an expression returning the Java object.
"MAI N' and ?t ank are argumentstothej ess. exanpl es. punps. Punp constructor.

Here we are creating the object using the new function (see Creating Java Objects). It instead could come from a variable,

from the return value of a Userfunction, and so forth. If you want to pattern-match on an object created from Java code, you
can use the store and fetch facility, like this:

i mport jess.*;
i nport jess.exanpl es. punps. *;

Rete engine = ...;
Tank t = ...;
Punp p = new Punp("MAIN', t);

/'l Register the object with the engi ne under the nane "punp-1"
engi ne. store("punp-1", new Val ue(p, RU. EXTERNAL_ADDRESS));

/1l Tell the definstance conmand to fetch the object nanmed "punp-1"
engi ne. execut eCommand(" (defi nstance punp (fetch punp-1))");
or you can use the technique from section 5.4.3, Creating and Executing RU.FUNCALL Objects, to pass the object to Jess.

Y ou could use this technique to set a defglobal to point to the object, asin the example in that section, or you could useit to
call the definstance function directly, like this:

i nport jess.*,
i nport jess.exanpl es. punps. *;

Rete engine = .. .;

file:///D/README.html (64 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

Tank t
Punp p

new Punp(" MAIN', t):

/'l Create the Funcall object
Funcall f = new Funcall ("definstance", engine);

/1 Now add the argunents
f.add(new Val ue("pump”, RU. STRING);
f.add(new Val ue(p, RU. EXTERNAL_ADDRESS));

/| Execute the function
f.sinpl eExecut e(f, engine. gl obal Context());

Oncedeclared inadef i nst ance construct, a Java object will be represented at all times by asingle fact in Jess. This fact
will be modified each time the object sendsa Pr oper t yChangeEvent . Y ou can write patterns on the LHS of aruleto

match this automatically generated and maintained fact, and as aresult, you can match the state of the Java object. For
example, given the punp def cl ass and def i nst ance, we can write the following rule:

(defrul e decrease-punp-flowif-high-1
“If apunp's flowrate is over 20, decrease it by 5 units.™
(punp (flow ?f& (> ?f 20)) (OBJECT ?punp))
=>
(set ?pump flow (- ?f 5)))
Note that by binding the value of the OBJECT dot on the LHS, we can modify the matched object from the RHS of the
rule. You can also use the nodi f y function for this purpose:

(defrul e decrease-punp-flowif-high-2
"If apunp's flowrate is over 20, decrease it by 5 units.™
?punp <- (punp (flow ?f& (> ?f 20)))
=>
(nodi fy ?punp (flow (- ?f 5))))
These two rules are equivalent, although the latter may be dlightly more efficient.

The Pump example given hereis taken from afull, working example that ships with Jess. To try it out, compile the classes
inj ess/ exanpl es/ punps:

j avac j ess\exanpl es\ punps*.java (Unix)
or

j avac | ess/ exanpl es/ punps/*.java (Wn32)

and then run the example as a Jess script:

java j ess. Mai n exanpl es\ punps\ punps. cl p (Uni x)
or

java j ess. Mai n exanpl es/ punps/ punps. clp (Wn32)
or the alternate version in which the objects are created in Java:

j ava j ess. exanpl es. punps. Mai nl nJava

(Of course, you also need to have first compiled the optional reflection commandsinj ess\ ref | ect .) Read the Java
source files and the punps. cl p fileto see what's going on. It's areal-time control problem and Jess does a passable job of
keeping two leaky tanks from overflowing or running dry. The Pumps and Tanks are Java objects that run in their own
threads, while Jess reacts to their Pr oper t yChangeEvent s, triggering rules which in turn adjust the pumps.

Note: You must be careful not to trigger any Pr oper t yChangeEvent svia calculations you perform on the LHS of any
rule. A rule of thumb is not to set any Java variables or call any methods that might possibly change an objects state.
Property accessor methods are fine. Violation of this warning can cause thread deadlock in the engine.

file:///D/README.html (65 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell
7.8 Efficiency

This reflection capability is extremely powerful and useful. However, such function calls will not be as efficient as calls
made to the same Java function through a compiled Userfunction interface. For example, the two Jess function calls:

(pi)
and
(get-nmenber java.lang. Math Pl)

both return the value of the static final member Pl of theclassj ava. | ang. Mat h, but thefirst call is much more efficient
because pi isaUserfunction. If you are going to call a Java function just once, go ahead and use cal | , but if you're going
touseitinaloop, consider wrapping it in a Userfunction if performance might be an issue.

8 How Jess Works

Note: The information in this Section is provided for the curious reader. An understanding of the Rete algorithm may be
helpful in planning expert systems; an understanding of Jess's implementation probably will not. Feel free to skip this
section and come back to it some other time. Y ou should not take advantage of many of the Java classes mentioned in this
section. They are internal implementation details and any Java code you write which uses them may well break each time a
new version of Jessis released.

Jess is arule-based expert system shell. In the simplest terms, this means that Jess's purpose it to continuously apply a set of
if-then statements (rules) to a set of data (fact list). Y ou define the rules that make up your own particular expert system.
Jess rules look something like this:

(defrule library-rule-1
(book (nane ?X) (status late) (borrower ?Y))
(borrower (nanme ?Y) (address ?72))
=>
(send-l ate-notice ?X ?Y ?2))
Note that this syntax isidentical to the syntax used by CLIPS. This rule might be trandated into psueudo-English as
follows:

Library rule #1
| f
a |l ate book exists, with name X, borrowed by soneone naned Y
and
that borrower's address is known to be Z
t hen
send a late notice to Y at Z about the book X

The book and borrower entities would be found on the fact list. The fact list istherefore a kind of database of bits of factual
knowledge about the world. The attributes (called slots) that things like books and borrowers are allowed to have are
defined in statements called deftemplates. Actionslikesend- | at e- not i ce can be defined in user-written functionsin
the Jess language (def f unct i ons) or in Java (Userfunctions). For more information about the CLIPS rule syntax (and to
work with Jess, you will certainly need to learn more!) refer to the previous section and to the CL1PS documentation
mentioned earlier.

Thetypical expert system has afixed set of rules while the fact list changes continuously. However, it is an empirical fact
that, in most expert systems, much of the fact list isalso fairly fixed from one rule operation to the next. Athough new facts
arrive and old ones are removed at al times, the percentage of facts that change per unit time is generally fairly small. For
this reason, the obvious implementation for the expert system shell is very inefficient. This obvious implementation would
be to keep alist of the rules and continuously cycle through the list, checking each one's left-hand-side (LHS) against the
fact list and executing the right-hand-side (RHS) of any rules that apply. Thisisinefficient because most of the tests made
on each cycle will have the same results as on the previous iteration. However, since the fact list is stable, most of the tests
will be repeated. Y ou might call this the rules finding facts approach and its computational complexity is of the order of

file:///D/README.html (66 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

O(RF*P), where R is the number of rules, P isthe average number of patterns per rule LHS, and F is the number of facts on
the fact list. This escalates dramatically as the number of patterns per rule increases.

Jessinstead uses a very efficient method known as the Rete (Latin for net) algorithm. The classic paper on the Rete
algorithm ("Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Problem”, Charles L. Forgy,
Artificial Intelligence 19 (1982), 17-37) became the basis for a whole generation of fast expert system shells: OPS5, its
descendant ART, and CLIPS. In the Rete algorithm, the inefficiency described above is alleviated (conceptually) by
remembering past test results across iterations of the rule loop. Only new facts are tested against any rule LHSs.
Additionally, as will be described below, new facts are tested against only the rule LHSs to which they are most likely to be
relevant. As aresult, the computational complexity per iteration drops to something more like O(RFP), or linear in the size
of the fact base. Our discussion of the Rete algorithm is necessarily brief. The interested reader is referred to the Forgy
paper or to Giarrantano and Riley, "Expert Systems: Principles and Programming”, Second Edition, PWS Publishing
(Boston, 1993) for a more detailed treatment.

The Rete algorithm isimplemented by building a network of nodes, each of which represents one or more tests found on a
rule LHS. Facts that are being added to or removed from the fact list are processed by this network of nodes. At the bottom
of the network are nodes representing individual rules. When a set of factsfiltersall the way down to the bottom of the
network, it has passed all the tests on the LHS of a particular rule and this set becomes an activation. The associated rule
may have its RHS executed (fired) if the activation is not invalidated first by the removal of one or more facts from its
activation set.

Within the network itself there are broadly two kinds of nodes: one-input and two-input nodes. One-input nodes perform
tests on individual facts, while two-input nodes perform tests across facts and perform the grouping function. Subtypes of
these two classes of node are al'so used and there are also auxilliary types such as the terminal nodes mentioned above.

An exampleis often useful at this point. The following rules:

(defrul e exanpl e-2 (defrul e exanpl e-3
(x) (x)
(y) (y)
(z) =>)
=>)
might be compiled into the following network:
R I i i S +----+ +----+ (one-input nodes)
| x? | | y? | | z? | | x2 | | y?|
B S T T SN e —— F-- - -+
\ / | \ /
R + | R +
| + | I | + |
R + | R +
\ | | (two-i nput nodes)
LS + |
| + | I
Fecemm e aa e + |
| I
o e e e e e ook + o e e e a ook +
| fire exanple-2 | | fire exanple-3 | (term nal s)
e + Fom e e e e - +

The nodes marked x ?, etc., test if afact contains the given data, while the nodes marked + remember all facts and fire
whenever they've received data from both their left and right inputs. To run the network, Jess presents new facts to each
node at the top of the network as they added to the fact list. Each node takes input from the top and sends its output
downwards. A singleinput node generally receives afact from above, applies atest toit, and, if the test passes, sends the
fact downward to the next node. If the test fails, the one-input nodes simply do nothing. The two-input nodes have to
integrate facts from their left and right inputs, and in support of this, their behavior must be more complex. First, note that
any facts that reach the top of atwo-input node could potentially contribute to an activation: they pass al tests that can be

file:///D/README.html (67 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

applied to single facts. The two input nodes therefore must remember al facts that are presented to them, and attempt to
group facts arriving on their left inputs with facts arriving on their right inputs to make up complete activation sets. A
two-input node therefore has aleft memory and aright memory. It is here in these memories that the inefficiency described
aboveisavoided. A convenient distinction is to divide the network into two logical components: the single-input nodes
comprise the pattern network, while the two-input nodes make up the join network.

There are two simple optimizations that can make Rete even better, The first isto share nodes in the pattern network. In the
network above, there are five nodes across the top, although only three are distinct. We can modify the network to share
these nodes across the two rules (the arrows coming out of the top of the x? and y ? nodes are outputs):

oo e o e e e oo +
N oo - - + |
I A I I
R R S S S |
| x2 | [y? [| z? | | I
A R A S |
/ / / | |
R + |/ +---/ R +
+ | -+ / | + |
R + / R +
\ / |
LS + |
I + I I
Fecemm e aaa e + |
I I
S + R +
| fire exanple-2 | | fire exanple-3 |
o e e e oo + o e e e e a oo +

But that's not all the redundancy in the original network. Now we see that there is one join node that is performing exactly
the same function (integrating X,y pairs) in both rules, and we can share that al so:

I e T T e
| x2 | [y? | | z?|
R S SIS S P
/ / /
S + |/ +---/
| + | -+ /
Fecemm e aa e + /
| \ /
| SRS +
| | + |
| R +
| |
| R +
| | fire exanple-2 |
| T +
oo +
| fire exanple-3 |
I +

The pattern and join networks are collectively only half the size they were originally. This kind of sharing comes up very
frequently in real systems and is a significant performance booster!

Y ou can see the amount of sharing in a Jess network by using thewat ch conpi | at i ons command. When aruleis
compiled and this command has been previously executed, Jess prints a string of characters something like this, which isthe
actual output from compiling rule example-2, above:

file:///D/README.html (68 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell
exanpl e-2: +1+1+1+1+1+1+2+2+t

Each time +1 appearsin this string, a new one-input node is created. +2 indicates a new two-input node. Now watch what
happens when we compile example-3:

exanpl e-3: =1=1=1=1=2+t
Here we see that =1 is printed whenever a pre-existing one-input node is shared; =2 is printed when atwo-input nodeis
shared. +t represents the terminal nodes being created. (Note that the number of single-input nodesis larger than expected.
Jess creates separate nodes that test for the head of each pattern and its length, rather than doing both of these testsin one
node, as we implicitly do in our graphical example.) No new nodes are created for rule example-3. Jess shares existing
nodes very efficiently in this case.

Jess's Rete implementation is very literal. Different types of network nodes are represented by various subclasses of the
Javaclassj ess. Node: Nodel, Node2, NodeNot 2, NodeTest , and NodeTer m The Nodel classis further
specialized because it contains a command member which causes it to act differently depending on the tests or functionsiit
needs to perform. For example, there are specializations of Node1 which test the first field (called the head) of afact, test
the number of fields of afact, test single slots within afact, and compare two slots within afact. There are further variations
which participate in the handling of multifields and multislots. The Jess language code is parsed by the classj ess. Jesp,
while the actual network is assembled by codeintheclassj ess. Ret eConpi | er . The execution of the network is
handled by the class Ret e. Thej ess. Mai n classitself isreally just a small demonstration driver for the jess package, in
which al of the interesting work is done.

Thevi ewcommand isagraphical viewer for the Rete network itself; | have used this as a debugging tool for Jess, but it
may have educational value for others, and it may help you to design more efficient systems of rulesin Jess. Issuing the

vi ewcommand after entering the rules example-2 and example-3 produces a very good facsimile of the drawing (although
it correctly shows the larger number of one-input nodes). The various nodes are color-coded according to their rolesin the
network; Nodel nodes are red; Node2 nodes are green; NodeNot 2 nodes are yellow; and NodeTer mnodes are blue.
Passing the mouse over a node displays information about the node and the tests it contains; double-clicking on anode
brings up a dialog box containing the same information (for join nodes, the memory contents are also displayed, while for
NodeTer mnodes, a pretty-print representation of the the rule is shown). See the description of the vi ewfunction for

important information before using it.

8 The Future of Jess

Jess will continue to be maintained and improved for the foreseeable future. | have alist of features| plan to implement, but
it's hard to associate timescales with any of them. They are listed in no particular order.

« Seridlization; first, something like CLIPS bl oad and bsave; ultimately, the ability to save the compiled form of
individua rules.

« More conflict resolution strategies, including user-definable ones.

« Backward chaining: agoal conditional element like ART.

« Thel ogi cal conditional element.

« A much more extensive Java API for embedding Jess in other applications

« Optiona compilation of Jess rulesto pure Java code (potential for large speed improvements)

9 Version History

Version 4.3 (December 3rd, 1998):

Fixed redundant default-value processing, which was leading to odd problems with definstances with null slot values
(thanksto S.S. Ozsariyildiz). Removed intern()s from Tokenizer (faster compilation). Fixed NIL/nil ambiguity in
ReflectFunctions (thanks Andreas Rasmussen.) New web site; no longer distribute "index.html".

Version 4.2 (November 12th, 1998):

Fixed 'Corrupted negent' bug (thanks to Todd Bowers). (if ... then) function now throws an exception if atom 'then' is
missing. Version string in 4.1 final was inadvertently left at 4.1b6. Added section to README explaining rule LHS

file:///D|/README.html (69 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

semantics a bit better. Rete.findFactBylD() is now public. Fix for very tricky 'phantom fact' problem reported by
Steve Bucuvalas. Java method calls on Jess Strings now work for all Strings, not just alphanumeric ones. "animals'
example modified to work with transitional gensym implementation.

Version 4.1 (September 15th, 1998):
Some minor bug fixes; code to allow you to leave off the'$ on amultivar after itsfirst use, asin CLIPS.
Version 4.1b6:

Allow named variablesin (not) CEs as long as they're not used in subsequent CEs. Fix a bug that was causing
(return) to not work if inside a (foreach) inside a deffunction. Recursive deffunctions now work again. Jess works
around a bug in some versions of Javathat was preventing the atom '-' from parsing. Rete.listDefglobals() no longer
lists duplicates of redefined defglobals (Karl Mueller found this one.) ReteDisplay.fireRule() is now called as
appropriate. Accessing pattern-binding variables on rule LHSs works again (Karl again.) (reset) wasn't clearing all
activations (thanks Al Davis); fixed. Funcall.toString() puts parens around the ValueV ector version.

Version 4.1b5:
Just remove some debug code and extrafiles inadvertently shipped with 4.1b4.
Version 4.1b4:

addUserfunction, addDeffunction, etc collapsed into one addUserfunction routine in Rete class; same with
findUserfunction. RU.getAtom() and RU.putAtom are gone! Userfunction.name() now returns String.

Control Structure interface used to clean up handling of such things. ReteCompiler uses Hashtables of Bindings
instead of int[][] for vartables. Added default-dynamic deftemplate slot qualifier. Added set-/get-reset-global's, and
changed the default defglobal reset behaviour. Added dynamic rule salience. Removed arbitrary limit of 32 slots for
ordered facts and 32 tests per slot for al facts. "unique" CE (15-30% speed increase for many problems!) Various
documentation improvements (many thanks to Win Carus.) Better error reporting (addContext() call in
ReteException.) Maformed callsto ‘eval’ or 'build' or ‘executeCommand' no longer go into an infinite loop on EOF.
Added "store" and "fetch". Added "external-addressp™. Rearranged Test1, Test2 classesinto an inheritance hierarchy
with avirtual doTest method, allowing for alternate implementations (undocumented java-test functionality
included). Value class will do more type conversions automatically. Final multifield argument of a deffunction now
actsasawildcard, asin CLIPS (thanks David Y oung.)

Version 4.1b3

Problem with calling public methods of package-private classes from Jess fixed thanks to Lars Rasmusson's
explanation. Qut O Menor yEr r or while parsing file containing unbalanced open parens fixed. Line breaksin
double-quoted strings no longer need to be (but can be) escaped. Two fixes thanks to Andreas Rasmusson: gensy ¥
returns a symbol as documented, not astring; and apr oper t yChangeEvent for abogus property no longer
causes Jess to retract adef i nst ance without updating it. Many of the synchronized methods in the Ret e class no
longer are synchronized; instead they use either synchronized blocks keyed to affected members or simply depend on
theinternal synchronization of Hashtables. r ead and r eadl i ne explicitly act differently for console-like and
file-like streams. Consol eDi spl ay getsaClear Window button.

Version 4.1b2

Bug in character-escape lexing fixed thanks to Josiah Poon. Parser-related bug in expl ode$ fixed thanks to Andrew
X. Comeas. eval , bui | d, execut eCommand() again properly return the result of last expression, not EOF. ni n,
max take arbitrary # of arguments. i npl ode$ now works; it apparently never really did. pri nt out puts parens
around multifields again. st r - conpar e documentation corrected. undef i nst ance now removes the fact
representing an object as well as deactivating matching. Wrote large regression test suite (not included in
distribution). Bug in multiple simultaneous Ret e. r un() callsin separate threads fixed thanks to Andreas
Rasmusson. Selectable conflict resolution strategies (only depth and breadth supported now) and user-definable
strategies. Thet ry command is added.

Version 4.1b1
Much better lexer (no more St r eamTokeni zer). Input buffering problems with JDK 1.1.2-1.1.4 fixed. Bug in
(t est) CEfixed. Cancall r un onrule RHS. Bug in incremental update fixed. Separate command-line, applet, and

GUI consoledriver classes (Qui z* classes broken up, renamed to Consol e*).r ead and r eadl i ne should work
exactly asin CLIPS. Manual describes more about how to write Javamai n() . Bugindefi nst ance that was

file:///D|/README.html (70 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

preventing use of subclasses of a defclassed classis fixed.
Version 4.0

Beanlnfo support. qui z. ht mM embeds only one Qui zDi spl ay applet. Punps demo works again (sorry).
Conflict resolution strategy now should be exactly the same as CLIPS's default.

Version 4.0b4

Extensive manual rewrite, adding lots of JavalJess interoperation info. Allow standard CLIPS deffunction docstrings.
Thanksto Jack Fitch, Dave Carlson and Alex Jacobson, property names for reflected Java Beans now use standard
capitalization transform. Better error reporting, especially during parsing and from the command line. set and get
renamed to set - nenber and get - nenber . set and get are now functions that read and write Bean properties.
ppdef r ul e properly handles quoted strings in function calls. execut eConmand and friends reuse a single parser.
Thanksto Karl Mueller for Ret e. retract St ri ng. Taught bat ch to read applet-based datafiles. eval now
handles non-sexps. Better mechanism for synchronizing streams. Qui zDi spl ay isan applet aswell asan
application. r un accepts an argument, the maximum number of rulesto fire. Fixed bug in nodi f y when new slot
value was a zero-length multifield. Fixed Ret eConpi | er bug where MTELN nodes were not consistently generated
for zero-length multifield matches. Thanks to Sidney Bailin, fixed problem with accessing defglobals and variables
bound to pattern indexes on rule LHSs. Added get - var function. Added undef i nst ance. nodi fy and

r et ract now handle definstance facts specially. Fixed some doPPPat t er n bugs (Dave Carlson again!).

Version 4.0b3

Added | ess. ref | ect package containing new, cal | ,set,andget . Added JessLi st ener andits
subclasses. added engi ne. Changed printing of external-addresses to include Java class name. Changed parser to
accept variable names as Funcall heads (cal | issubstitued, resulting in aruntime error if cal | isnot installed).
and and or functions now accept any values as arguments, not only funcalls. Added f or each control structure.
Command prompt doesn't print NI L return values. Fixed another not bug (thanks to Sidney Bailin). Added matching
of Javaobjectsonrule LHSs: def i nst ance, def cl ass. TokenTr ee now usessort code % 101 ashash
key, not thesor t code itself. All global classes moved into] ess package. Jess classrenamed Mai n.

Version 4.002

Cleaned up router/parser interactions. Jess will now read only one construct on aline of input (just like CLIPS). All
Jess output now goes through WSTDOUT router, not through Ret eDi spl ay. st dout () . Fixed bug whereby
second and later references to subfields of multifields on the LHS of arule would resolve to the whole multifield.
nodi fy can now properly handle multislots. f or mat handles trailing spaces. Finally, parsing of integers: 2 isan
RU. | NTECGER, while 2. 0 isan RU. FLOAT. Added eval andl i st-function$.

Version 4.0b1

Code reformat. Major performance enhancements (Val ue and Funcal | recycling; Fastfunction interface; Rete
memories are now btrees; RU. CLEARtokens). t est CE. Return-value constraints. ppdef r ul e thanksto Rgjaram
Ganeshan. Blank variablesin not CEs. syst emblocks by default. readline fixed. bui | d supported. logic for
predicate functions in Rete network now precisely the sasme asfor CLIPS. Qui zDi spl ay demo. whi | e andi f
accept boolean variables. Implied returnsfrom i f and whi | e functions. Added expl ode$. Added I/O routers:
open, cl ose. Added f or mat . Added bag.

Version 3.2

syst emandi nt eger Userfunction classes renamed (Win95 filename capitalization problem!). Broken del et e$,
i nsert$,repl ace$ fixed. vi ew command added. Big if/then in Funcall class finally removed in favor of
separate implementation classes for intrinsics, leading to a modest speed increase. Documentation vastly expanded!
Added catch for Ar r ayQut O BoundsExcept i on in command-line interface; no more crash on wrong number of
arguments. Broken evenp, oddp fixed. st r- cat , sym cat made more general. Broken sub- st ri ng fixed.
Big switch in Node1 class replaced by separate classes, leading to a very modest speed increase.

Version 3.1

Added theassert - stri ng and bat ch commands. Two bug fixes in multisiot code (thanks to Nancy Flaherty).
Added undef r ul e and the ability to redefine rules. Added the sy st emfunction, although it doesn't work very
well under Java. Public function engi ne() inj ess. Cont ext classallowsyou to do fancier thingsin
Userfunctions. Added the non-standard | oad- package and | oad- f unct i on functions. Many new contributed

file:///D|/README.html (71 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

functions packaged with Jess for doing math, handling multifields, and other neat stuff thanks to Win Carus. Added
t i me (1 second resolution).

Version 3.0

A few code changes to accomodate Microsoft's Java compiler; Jess now compiles unchanged with JV C thanks to
Mike Finnegan. Added nenber $ multifield function. Added cl ear intrinsic thanksto Karl Mueller. Introduced a
new way of handling not patterns which | think finally guarantees there are no more not-related bugs remaining!

| oad- f act s, which has been non-functional throughout the beta period, is working again. Documentation now
explains unzipping and compiling alittle better. Modified the way fact-id's are handled so that you can write
(retract 3) toretract fact #3.

Version 3.002

Lots of bug reports and improvement suggestions from the field - thanks folks! All the reported bugsin the multifield
implementation, and some residual odd behavior inthe not CE, have been fixed. Theexi t command has been
added. A command prompt has been added. The # character can now be used in symbols. The access levels on some
methods in the Ret e class have been opened up; Ret e isno longer final. nt h$ isnow 1-based, asitisin CLIPS.
Thei f and whi | e constructs now fireonnot FALSE instead of TRUE. The st r - i ndex function has been fixed
and added. Probably afew more things I'm forgetting here. Thanks for the input. Particular thanks to Nancy Flaherty,
Joszef Toth, Karl Mueller, Duane Steward, and Michelle Dunn for reporting bugs fixed in this version; sorry if | left
anyone out.

Version 3.0b1
First public release of Jess 3.0.

Version 3.0a3
UserPackage interface. Lots of new example UserFunctions for multifields, string, and predicates.

Version 3.0a2
Multislots! Also important bug fix: under certain circumstances, the Rete network compilation could fail 1) if
(not ()) CEsoccurred on the LHS of arule, 2) new variables were introduced in that rul€e's patterns listed after the
(not ()) CEs, and 3) these latter variables were tested (i.e., in a predicate constraint) on the LHS of therule.

Version 3.0al
Incremental reset. Watch activations. gc() inLost Di spl ay, Nul | Di spl ay. Multifields! All the Rete engine
classes are now in apackage named j ess. Many classes and methods that should not be manipulated by clients are
now package-private.

Version 2.2.1
Ken Bertapelle found another bug, which has been squashed, in the pattern network.

Version 2.2
Jess 2.2 adds afew new function calls (I oad- f act s, save-f act s) and fixes a serious bug (thanks to Ken
Bertapelle for pointing it out!) which caused Jess to crash when predicate constraints were used in a certain way.
Another bug fix corrected the fact that r et r act only retracted the first of alist of facts. Jess used to give atruly
inscrutable error message if a variable wasfirst used in anot CE (a syntax error); the current error message is much
easier to understand. | also clarified afew pointsin the documentation.

Version 2.1

Jess 2.1 is*much* faster than version 2.0. The Monkey example runsin about half the time as under Jess 2.0, and for
some inputs, the speed has increased by an order of magnitude! Thisis probably the last big speed increase I'll get.
For Java/Rete weenies, this speed increase came from banishing the use of java.lang.Vector in Tokensand in
two-input node memories. Jessis now within abelievable interpreted Java/C++ speed ratio range of about 30:1. Jess
2.1 now includes rule salience. It a'so implements afew additional intrinsic functions. gensynt , nod, r eadl i ne.
Jess 2.1 fixes abug in the way predicate constraints were parsed under some conditions by Jess 2.0. The parser now
reports line numbers when it encounters an error.

Version 2.0

Jess 2.0 isintrinsically about 30% faster than version 1.0. The internal data structures changed quite a bit. The Rete
network now shares nodes in the Join network instead of just in the pattern network. The current data structures

file:///D|/README.html (72 of 73) [5/3/1999 2:51:07 PM]

Jess, the Java Expert System Shell

should allow for continued improvement.
If anyone writes an emulation of a CLIPS function that Jess omits, please send it to me and I'll include it in the next release
(with credit to you, of course).

At the time of thiswriting, Jess has many thousands of registered users. | have been very pleased by this response and have
enjoyed working with many of Jess's more ambitious users. If you use Jess, and if you have comments, questions, or
concerns, please don't hesitate to ask.

Finally, thanksto Gary Riley and the gang at NASA for writing the marvelous CLIPS in the first place!

Ernest Friedman-Hil | Phone: (925) 294-2154
Di stributed Conputing FAX: (925) 294-2234
Sandi a National Labs ej fried@a. sandi a. gov
Org. 8920, Ms 9214 htt p:// herzberg. ca. sandi a. gov
PO Box 969

Li vernore, CA 94550

file:///D/README.html (73 of 73) [5/3/1999 2:51:07 PM]

	Local Disk
	Jess, the Java Expert System Shell

